Citation Relationships



Klein DJ, Depireux DA, Simon JZ, Shamma SA (2000) Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design. J Comput Neurosci 9:85-111 [PubMed]

References and models cited by this paper

References and models that cite this paper

Aertsen A, Johannesma P (1980) Spectro-temporal receptive fields of auditory neurons in the grassfrog. I. Characterization of tonal and natural stimuli Biol Cybernet 38:223-234

Aertsen A, Johannesma P, Hermes D (1980) Spectro-temporal receptive fields of auditory neurons in the grassfrog. II. Analysis of the stimulus-event relation for tonal stimuli Biol Cybernet 38:235-248

Aertsen AM, Johannesma PI (1981) A comparison of the spectro-temporal sensitivity of auditory neurons to tonal and natural stimuli. Biol Cybern 42:145-56 [PubMed]

Aertsen AM, Johannesma PI (1981) The spectro-temporal receptive field. A functional characteristic of auditory neurons. Biol Cybern 42:133-43 [PubMed]

Aertsen AM, Olders JH, Johannesma PI (1981) Spectro-temporal receptive fields of auditory neurons in the grassfrog. III. Analysis of the stimulus-event relation for natural stimuli. Biol Cybern 39:195-209 [PubMed]

Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868-71 [PubMed]

Attias H, Schreiner CE (1997) Temporal low-order statistics of natural sounds Advances in Neural Information Processing Systems, Mozer M:Jordan M:Petsche T, ed. pp.27

Azouz R, Gray CM (1999) Cellular mechanisms contributing to response variability of cortical neurons in vivo. J Neurosci 19:2209-23 [PubMed]

Backoff PM, Clopton BM (1991) A spectrotemporal analysis of DCN single unit responses to wideband noise in guinea pig. Hear Res 53:28-40 [PubMed]

Boyd S, Tang Y, Chua L (1983) Measuring Volterra kernels IEEE Trans Circuits And Systems 30:571-577

Carney LH, Friedman M (1998) Spatiotemporal tuning of low-frequency cells in the anteroventral cochlear nucleus. J Neurosci 18:1096-104 [PubMed]

Carney LH, Yin TC (1988) Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model. J Neurophysiol 60:1653-77 [Journal] [PubMed]

Chi T, Gao Y, Guyton MC, Ru P, Shamma S (1999) Spectro-temporal modulation transfer functions and speech intelligibility. J Acoust Soc Am 106:2719-32 [PubMed]

Clopton BM, Backoff PM (1991) Spectrotemporal receptive fields of neurons in cochlear nucleus of guinea pig. Hear Res 52:329-44 [PubMed]

Cohen L (1995) Time-Frequency Analysis

de Boer E, de Jongh HR (1978) On cochlear encoding: potentialities and limitations of the reverse-correlation technique. J Acoust Soc Am 63:115-35 [PubMed]

De_boer E (1967) Correlation studies applied to the frequency resolution of the cochlea J Auditory Res 7:209-217

deCharms RC, Blake DT, Merzenich MM (1998) Optimizing sound features for cortical neurons. Science 280:1439-43 [PubMed]

Depireux D, Simon J, Klein D, Shamma S (1998) Representation of dynamic complex spectra in primary auditory cortex Assoc Res Otolaryngol Abs

Depireux D, Simon J, Shamma S (1998) Measuring the dynamics of neural responses in primary auditory cortex Comments Theoretical Biol 5:89-118

Eggermont JJ (1993) Wiener and Volterra analyses applied to the auditory system. Hear Res 66:177-201 [PubMed]

Eggermont JJ, Aertsen AM, Hermes DJ, Johannesma PI (1981) Spectro-temporal characterization of auditory neurons: redundant or necessary. Hear Res 5:109-21 [PubMed]

Eggermont JJ, Aertsen AM, Johannesma PI (1983) Prediction of the responses of auditory neurons in the midbrain of the grass frog based on the spectro-temporal receptive field. Hear Res 10:191-202 [PubMed]

Eggermont JJ, Aertsen AM, Johannesma PI (1983) Quantitative characterisation procedure for auditory neurons based on the spectro-temporal receptive field. Hear Res 10:167-90 [PubMed]

Eggermont JJ, Johannesma PM, Aertsen AM (1983) Reverse-correlation methods in auditory research. Q Rev Biophys 16:341-414 [PubMed]

Eggermont JJ, Smith GM (1990) Characterizing auditory neurons using the Wigner and Rihacek distributions: a comparison. J Acoust Soc Am 87:246-59 [PubMed]

Epping WJ, Eggermont JJ (1985) Single-unit characteristics in the auditory midbrain of the immobilized grassfrog. Hear Res 18:223-43 [PubMed]

Escab M, Schreiner C, Miller L (1998) Dynamic time-frequency processing in the cat midbrain, thalamus, and auditory cortex: Spectro-temporal receptive fields obtained using dynamic ripple spectra Soc Neurosci Abstr 24:1879

fer M, bsamen R, rrscheidt GJ, Knipschild M (1992) response characteristics? Hear Res 57:231-44

Hermes DJ, Aertsen AM, Johannesma PI, Eggermont JJ (1981) Spectro-temporal characteristics of single units in the auditory midbrain of the lightly anaesthetised grass frog (Rana temporaria L) investigated with noise stimuli. Hear Res 5:147-78 [PubMed]

Johnson DH (1980) Applicability of white-noise nonlinear system analysis to the peripheral auditory system. J Acoust Soc Am 68:876-84 [PubMed]

Kim PJ, Young ED (1994) Comparative analysis of spectro-temporal receptive fields, reverse correlation functions, and frequency tuning curves of auditory-nerve fibers. J Acoust Soc Am 95:410-22 [PubMed]

Korenberg MJ, Hunter IW (2000) The identification of nonlinear biological systems: Volterra kernel approaches. Ann Biomed Eng 24:250-68

Kowalski N, Depireux DA, Shamma SA (1996) Analysis of dynamic spectra in ferret primary auditory cortex. II. Prediction of unit responses to arbitrary dynamic spectra. J Neurophysiol 76:3524-34 [Journal] [PubMed]

Kowalski N, Depireux DA, Shamma SA (1996) Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J Neurophysiol 76:3503-23 [Journal] [PubMed]

Kvale M, Schreiner C, Bonham B (1998) Spectro-temporal and adaptive response to AM stimuli in the inferior colliculus Abstracts of the Twenty-first ARO Mid-Winter Meeting

Langner G (1992) Periodicity coding in the auditory system. Hear Res 60:115-42 [PubMed]

Lee YW, Schetzen M (1965) Measurement of the Wiener kernels of a non-linear system by cross-correlation Int J Cont 2:237-255

Marmarelis PN, Marmarelis VZ (1978) Analysis of Physiological Systems: The White Noise Approach

Marmarelis VZ (2000) Identification of nonlinear biological systems using Laguerre expansions of kernels. Ann Biomed Eng 21:573-89

Nelken I, Kim PJ, Young ED (1997) Linear and nonlinear spectral integration in type IV neurons of the dorsal cochlear nucleus. II. Predicting responses with the use of nonlinear models. J Neurophysiol 78:800-11 [Journal] [PubMed]

Nelken I, Rotman Y, Bar Yosef O (1999) Responses of auditory-cortex neurons to structural features of natural sounds. Nature 397:154-7 [Journal] [PubMed]

Palm G, Pöpel B (1985) Volterra representation and Wiener-like identification of nonlinear systems: scope and limitations. Q Rev Biophys 18:135-64 [PubMed]

Papoulis A (1962) The Fourier Integral and Its Applications

Pickles JO (1988) An introduction to the physiology of hearing.

Ruggero MA (1992) Physiology and coding of sound in the auditory nerve Springer Handbook Of Auditory Research The Mammalian Auditory Pathway: Neurophysiology, Popper AN:Fay RR, ed. pp.34

Schreiner C, Calhoun B (1995) Spectral envelope coding in cat primary auditory cortex: Properties of ripple transfer functions J Auditory Neurosci 1:39-61

Shamma S, Depireux D, Klein D, Simon J (1998) Representation of dynamic broadband spectra in auditory cortex Soc Neurosci Abstracts 24:402

Shamma S, Versnel H, Kowalski N (1995) Ripple analysis in the ferret primary auditory cortex. I. Response characteristics of single units to sinusoidally ripples spectra J Auditory Neurosci 1:233-254

Shamma SA (1985) nerve. J Acoust Soc Am 78:1612-21

Smolders JW, Aertsen AM, Johannesma PI (1979) Neural representation of the acoustic biotope. A comparison of the response of auditory neurons to tonal and natural stimuli in the cat. Biol Cybern 35:11-20 [PubMed]

Sutter E (1992) A deterministic approach to nonlinear systems analysis Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks, Pinter R:Nabet B, ed. pp.171

Swerup C (1978) On the choice of noise for the analysis of the peripheral auditory system. Biol Cybern 29:97-104 [PubMed]

Temchin A, Recio A, Van_dijk P, Ruggero M (1995) Wiener-kernel analysis of chinchilla auditory-nerve responses to noise Abstracts of the Eighteenth ARO Mid-Winter Meeting

Theunissen F, Sen K, Doupe A (1998) Characterizing non-linear encoding in the zebra finch auditory forebrain Soc Neurosci Abstracts 24:402

Valois RD, Valois KD (1990) Spatial Vision

van Dijk P, Wit HP, Segenhout JM (1997) Application of high-order Wiener-kernel analysis. Hear Res 114:229-42

Victor J, Knight B (1979) Nonlinear analysis with an arbitrary stimulus ensemble Quarterly Of Applied Math 37:113-136

Victor J, Shapley R (1980) A method of nonlinear analysis in the frequency domain. Biophys J 29:459-83 [Journal] [PubMed]

Victor JD (1991) functional expansions to Wiener kernels. Ann Biomed Eng 19:383-99

Victor JD (1992) Nonlinear system analysis in vision: Overview of kernel methods Nonlinear Vision, Pinter RB:Nabet B, ed. pp.1

Volterra V (1930) Theory of Functionals and of Integro-Differential Equations

Wiener N (1958) Nonlinear Problems in Random Theory

Yamada W, Wolodkin G, Lewis E, Henry K (1997) Wiener kernel analysis and the singular value decomposition Diversity in Auditory Mechanics, Lewis E, ed. pp.111

Yamada WM, Lewis ER (1999) bullfrog auditory units to complex acoustic waveforms. Hear Res 130:155-70

Yeshurun Y, Wollberg Z, Dyn N, Allon N (1985) Prediction of responses to species specific vocalizations. Biol Cybern 51:383-90

Escabí MA, Nassiri R, Miller LM, Schreiner CE, Read HL (2005) The contribution of spike threshold to acoustic feature selectivity, spike information content, and information throughput. J Neurosci 25:9524-34 [Journal] [PubMed]

Gill P, Zhang J, Woolley SM, Fremouw T, Theunissen FE (2006) Sound representation methods for spectro-temporal receptive field estimation. J Comput Neurosci 21:5-20 [Journal] [PubMed]

Gütig R, Sompolinsky H (2009) Time-warp-invariant neuronal processing. PLoS Biol 7:e1000141 [Journal] [PubMed]

   Time-warp-invariant neuronal processing (Gutig & Sompolinsky 2009) [Model]

Klein DJ, Simon JZ, Depireux DA, Shamma SA (2006) Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex. J Comput Neurosci 20:111-36 [Journal] [PubMed]

Leon PS, Vanzetta I, Masson GS, Perrinet LU (2012) Motion clouds: model-based stimulus synthesis of natural-like random textures for the study of motion perception. J Neurophysiol 107:3217-26 [Journal] [PubMed]

   Motion Clouds: Synthesis of random textures for motion perception (Leon et al. 2012) [Model]

Simon JZ, Depireux DA, Klein DJ, Fritz JB, Shamma SA (2007) Temporal symmetry in primary auditory cortex: implications for cortical connectivity. Neural Comput 19:583-638 [Journal] [PubMed]

(72 refs)