Citation Relationships



Varela JA, Sen K, Gibson J, Fost J, Abbott LF, Nelson SB (1997) A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J Neurosci 17:7926-40[PubMed]

   Short term plasticity of synapses onto V1 layer 2/3 pyramidal neuron (Varela et al 1997)

References and models cited by this paper

References and models that cite this paper

Betz WJ (1970) Depression of transmitter release at the neuromuscular junction of the frog. J Physiol 206:629-44 [PubMed]

Bode-Greuel KM, Singer W, Aldenhoff JB (1987) A current source density analysis of field potentials evoked in slices of visual cortex. Exp Brain Res 69:213-9 [PubMed]

Bonds AB (1991) Temporal dynamics of contrast gain in single cells of the cat striate cortex. Vis Neurosci 6:239-55 [PubMed]

Castillo DELJ, Katz B (1954) Statistical factors involved in neuromuscular facilitation and depression J Physiol 124:574-585

Castro-Alamancos MA, Connors BW (1996) Spatiotemporal properties of short-term plasticity sensorimotor thalamocortical pathways of the rat. J Neurosci 16:2767-79 [PubMed]

Debanne D, Guerineau NC, Gahwiler BH, Thompson SM (1996) Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. J Physiol 491 ( Pt 1):163-76 [PubMed]

Deisz RA, Fortin G, Zieglgansberger W (1991) Voltage dependence of excitatory postsynaptic potentials of rat neocortical neurons. J Neurophysiol 65:371-82 [Journal] [PubMed]

Deisz RA, Prince DA (1989) Frequency-dependent depression of inhibition in guinea-pig neocortex in vitro by GABAB receptor feed-back on GABA release. J Physiol 412:513-41 [PubMed]

Domenici L, Harding GW, Burkhalter A (1995) Patterns of synaptic activity in forward and feedback pathways within rat visual cortex. J Neurophysiol 74:2649-64 [Journal] [PubMed]

Ferster D (1994) Linearity of synaptic interactions in the assembly of receptive fields in cat visual cortex. Curr Opin Neurobiol 4:563-8 [PubMed]

Finlayson PG, Cynader MS (1995) Synaptic depression in visual cortex tissue slices: an in vitro model for cortical neuron adaptation. Exp Brain Res 106:145-55 [PubMed]

Fisher SA, Fischer TM, Carew TJ (1997) Multiple overlapping processes underlying short-term synaptic enhancement. Trends Neurosci 20:170-7 [PubMed]

Giaschi D, Douglas R, Marlin S, Cynader M (1993) The time course of direction-selective adaptation in simple and complex cells in cat striate cortex. J Neurophysiol 70:2024-34 [Journal] [PubMed]

Grossberg S (1984) Some psychophysiological and pharmacological correlates of a developmental, cognitive, and motivational theory Brain And Information: Event Related Potentials, Karrer R:Cohen J:Tueting P, ed. pp.58

Hawken MJ, Shapley RM, Grosof DH (1996) Temporal-frequency selectivity in monkey visual cortex. Vis Neurosci 13:477-92 [PubMed]

Herrington J, Norton KR, Bookman RJ (1995) Pulse Control V4 5 Igor Xops For Patch Clamp Data Acquisition And Capacitance Measurements

Hess G, Aizenman CD, Donoghue JP (1996) Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J Neurophysiol 75:1765-78 [Journal] [PubMed]

Hestrin S (1992) Activation and desensitization of glutamate-activated channels mediating fast excitatory synaptic currents in the visual cortex. Neuron 9:991-9 [PubMed]

Hirsch JA, Gilbert CD (1991) Synaptic physiology of horizontal connections in the cat's visual cortex. J Neurosci 11:1800-9 [PubMed]

Ho WA, Berkley MA (1988) Evoked potential estimates of the time course of adaptation and recovery to counterphase gratings. Vision Res 28:1287-96 [PubMed]

Jagadeesh B, Wheat HS, Ferster D (1993) Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. Science 262:1901-4 [PubMed]

Kirkwood A, Bear MF (1994) Hebbian synapses in visual cortex. J Neurosci 14:1634-45 [PubMed]

Kulikowski JJ, Bishop PO, Kato H (1979) Sustained and transient responses by cat striate cells to stationary flashing light and dark bars. Brain Res 170:362-7 [PubMed]

Kusano K, Landau EM (1975) Depression and recovery of transmission at the squid giant synapse. J Physiol 245:13-22 [PubMed]

Langdon RB, Sur M (1990) Components of field potentials evoked by white matter stimulation in isolated slices of primary visual cortex: spatial distributions and synaptic order. J Neurophysiol 64:1484-501 [Journal] [PubMed]

Liley AW, North KAK (1952) An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction J Neurophysiol 16:509-527 [Journal]

Liu G, Tsien RW (1995) Properties of synaptic transmission at single hippocampal synaptic boutons. Nature 375:404-8 [PubMed]

Maddess T, McCourt ME, Blakeslee B, Cunningham RB (1988) Factors governing the adaptation of cells in area-17 of the cat visual cortex. Biol Cybern 59:229-36 [PubMed]

Magleby KL (1987) Short term changes in synaptic efficacy Synaptic Function, Edelman G:Gall W:Cowan W, ed. pp.21

Magleby KL, Zengel JE (1975) A quantitative description of tetanic and post-tetanic potentiation of transmitter release at the frog neuromuscular junction. J Physiol 245:183-208 [PubMed]

Markram H, Tsodyks MMarlin SG, Douglas RM, Cynader MS (1991) Position-specific adaptation in simple cell receptive fields of the cat striate cortex. J Neurophysiol 66:1769-84 [Journal] [PubMed]

McLean J, Palmer LA (1996) Contrast adaptation and excitatory amino acid receptors in cat striate cortex. Vis Neurosci 13:1069-87 [PubMed]

Metherate R, Ashe JH (1994) Facilitation of an NMDA receptor-mediated EPSP by paired-pulse stimulation in rat neocortex via depression of GABAergic IPSPs. J Physiol 481 ( Pt 2):331-48 [PubMed]

Mitzdorf U, Singer W (1978) Prominent excitatory pathways in the cat visual cortex (A 17 and A 18): a current source density analysis of electrically evoked potentials. Exp Brain Res 33:371-94 [PubMed]

Movshon JA, Lennie P (1979) Pattern-selective adaptation in visual cortical neurones. Nature 278:850-2 [PubMed]

Movshon JA, Thompson ID, Tolhurst DJ (1978) Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. J Physiol 283:101-20 [PubMed]

Nelson SB (1991) Temporal interactions in the cat visual system. III. Pharmacological studies of cortical suppression suggest a presynaptic mechanism. J Neurosci 11:369-80 [PubMed]

Nelson SB (1991) Temporal interactions in the cat visual system. I. Orientation-selective suppression in the visual cortex. J Neurosci 11:344-56 [PubMed]

Nelson SB, Smetters DK (1993) Short term plasticity of minimal synaptic currents in visual cortical neurons Soc Neurosci Abstr 19:629

Nelson SB, Variela JA, Sen K, Abbott LF (1997) Functional significance of synaptic depression between cortical neurons Computational Neuroscience: Trends in Research, Bower J, ed. pp.429

Ohzawa I, Sclar G, Freeman RD (1982) Contrast gain control in the cat visual cortex. Nature 298:266-8 [PubMed]

Orban GA, Hoffmann KP, Duysens J (1985) Velocity selectivity in the cat visual system. I. Responses of LGN cells to moving bar stimuli: a comparison with cortical areas 17 and 18. J Neurophysiol 54:1026-49 [Journal] [PubMed]

Pinco M, Lev-Tov A (1993) Modulation of monosynaptic excitation in the neonatal rat spinal cord. J Neurophysiol 70:1151-8 [Journal] [PubMed]

Prince DA, Stevens CF (1992) Adenosine decreases neurotransmitter release at central synapses. Proc Natl Acad Sci U S A 89:8586-90 [PubMed]

Regehr WG, Delaney KR, Tank DW (1994) The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse. J Neurosci 14:523-37 [PubMed]

Reid RC, Soodak RE, Shapley RM (1991) Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. J Neurophysiol 66:505-29 [Journal] [PubMed]

Rosenmund C, Stevens CF (1996) Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16:1197-207 [PubMed]

Rutecki PA, Lebeda FJ, Johnston D (1987) 4-Aminopyridine produces epileptiform activity in hippocampus and enhances synaptic excitation and inhibition. J Neurophysiol 57:1911-24 [Journal] [PubMed]

Ryan TA, Smith SJ (1995) Vesicle pool mobilization during action potential firing at hippocampal synapses. Neuron 14:983-9 [PubMed]

Sen K, Jorge-Rivera JC, Marder E, Abbott LF (1996) Decoding synapses. J Neurosci 16:6307-18 [PubMed]

Shapley R, Lennie P (1985) Spatial frequency analysis in the visual system. Annu Rev Neurosci 8:547-83 [PubMed]

Somers D, Todorov E, Siapas A, Nelson SB (1996) Contrast adaptation effects modeled as thalamocortical and intracortical synaptic transmission changes Soc Neurosci Abstr 22:643

Song S, Varela JA, Abbott LF, Turrigiano G, Nelson SB (1997) The dynamics of synaptic depression at monosynaptic inhibitory inputs to visual cortical pyramidal neurons Cns 97, Bower JM, ed.

Stevens CF, Wang Y (1995) Facilitation and depression at single central synapses. Neuron 14:795-802 [PubMed]

Stratford KJ, Tarczy-Hornoch K, Martin KA, Bannister NJ, Jack JJ (1996) Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature 382:258-61 [PubMed]

Sutor B, Hablitz JJ (1989) EPSPs in rat neocortical neurons in vitro. I. Electrophysiological evidence for two distinct EPSPs. J Neurophysiol 61:607-20 [Journal] [PubMed]

Swandulla D, Hans M, Zipser K, Augustine GJ (1991) Role of residual calcium in synaptic depression and posttetanic potentiation: fast and slow calcium signaling in nerve terminals. Neuron 7:915-26 [PubMed]

Thomson AM, Deuchars J (1994) Temporal and spatial properties of local circuits in neocortex. Trends Neurosci 17:119-26 [PubMed]

Thomson AM, Deuchars J, West DC (1993) Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. J Neurophysiol 70:2354-69 [Journal] [PubMed]

Thomson AM, West DC (1993) Fluctuations in pyramid-pyramid excitatory postsynaptic potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired intracellular recordings in rat neocortex. Neuroscience 54:329-46 [PubMed]

Tolhurst DJ, Walker NS, Thompson ID, Dean AF (1980) Non-linearities of temporal summation in neurones in area 17 of the cat. Exp Brain Res 38:431-5 [PubMed]

Trussell LO, Zhang S, Raman IM (1993) Desensitization of AMPA receptors upon multiquantal neurotransmitter release. Neuron 10:1185-96 [PubMed]

Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A 94:719-23 [PubMed]

Varela JA, Richards K, Nelson SB (1995) Modulation of synaptic inputs to visual cortical neurons by adenosine and 5-HT Soc Neurosci Abstr 21:1653

Zucker RS (1989) Short-term synaptic plasticity. Annu Rev Neurosci 12:13-31 [PubMed]

Aristizabal F, Glavinovic MI (2004) Simulation and parameter estimation of dynamics of synaptic depression. Biol Cybern 90:3-18 [PubMed]

   Vesicular pool simulations of synaptic depression (Aristizabal and Glavinovic 2004) [Model]

Banitt Y, Martin KA, Segev I (2005) Depressed responses of facilitatory synapses. J Neurophysiol 94:865-70 [Journal] [PubMed]

   Contrast invariance by LGN synaptic depression (Banitt et al. 2007) [Model]

Banitt Y, Martin KA, Segev I (2007) A biologically realistic model of contrast invariant orientation tuning by thalamocortical synaptic depression. J Neurosci 27:10230-9 [Journal] [PubMed]

   Contrast invariance by LGN synaptic depression (Banitt et al. 2007) [Model]

Baxter DA, Byrne JH (2007) Short-term plasticity in a computational model of the tail-withdrawal circuit in Aplysia Neurocomputing 70(10-12):1993-1999 [Journal]

   Homosynaptic plasticity in the tail withdrawal circuit (TWC) of Aplysia (Baxter and Byrne 2006) [Model]

Beverlin B, Kakalios J, Nykamp D, Netoff TI (2011) Dynamical changes in neurons during seizures determine tonic to clonic shift. J Comput Neurosci [Journal] [PubMed]

   Epileptic seizure model with Morris-Lecar neurons (Beverlin and Netoff 2011) [Model]

Burkitt AN, Meffin H, Grayden DB (2004) Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural Comput 16:885-940 [PubMed]

Cai Y, Gavornik JP, Cooper LN, Yeung LC, Shouval HZ (2007) Effect of stochastic synaptic and dendritic dynamics on synaptic plasticity in visual cortex and hippocampus. J Neurophysiol 97:375-86 [PubMed]

Clark PT, van Rossum MCW (2005) The Optimal Synapse for Sparse, Binary Signals in the Rod Pathway Neural Comput 18:26-44

Costa RP, Sjostrom PJ, van Rossum MC (2013) Probabilistic Inference of Short-Term Synaptic Plasticity in Neocortical Microcircuits Front. Comput. Neurosci. [Journal] [PubMed]

   Prob. Inference of Short-Term Synaptic Plasticity in Neocort. Microcircuits (Costa et al. 2013) [Model]

Eriksson D, Fransen E, Zilberter Y, and Lansner A (2003) Effects of short-term synaptic plasticity in a local microcircuit on cell firing. Neurocomputing 52-54:7-12

Ermentrout GB, Terman DH (2010) Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics, Antman SS:Marsden JE:Sirovich L:Wiggins, ed. pp.1 [Journal]

   Mathematical Foundations of Neuroscience (Ermentrout and Terman 2010) [Model]

Esposito U, Giugliano M, Vasilaki E (2015) Adaptation of short-term plasticity parameters via error-driven learning may explain the correlation between activity-dependent synaptic properties, connectivity motifs and target specificity. Front Comput Neurosci 8:175 [Journal] [PubMed]

   Adaptation of Short-Term Plasticity parameters (Esposito et al. 2015) [Model]

Fuhrmann G, Segev I, Markram H, Tsodyks M (2002) Coding of temporal information by activity-dependent synapses. J Neurophysiol 87:140-8 [Journal] [PubMed]

Goldman MS (2004) Enhancement of information transmission efficiency by synaptic failures. Neural Comput 16:1137-62 [PubMed]

Hines ML, Carnevale NT (2004) Discrete event simulation in the NEURON environment. Neurocomputing 58-60:1117-1122 [Journal]

   Discrete event simulation in the NEURON environment (Hines and Carnevale 2004) [Model]

Houweling AR, Bazhenov M, Timofeev I, Grenier F, Steriade M, Sejnowski TJ (2002) Frequency-selective augmenting responses by short-term synaptic depression in cat neocortex. J Physiol 542:599-617 [PubMed]

Hummos A, Franklin CC, Nair SS (2014) Intrinsic mechanisms stabilize encoding and retrieval circuits differentially in a hippocampal network model. Hippocampus 24:1430-1448 [Journal] [PubMed]

   Role for short term plasticity and OLM cells in containing spread of excitation (Hummos et al 2014) [Model]

Hummos A, Nair SS (2017) An integrative model of the intrinsic hippocampal theta rhythm. PLoS One 12:e0182648 [Journal] [PubMed]

   Role for short term plasticity and OLM cells in containing spread of excitation (Hummos et al 2014) [Model]

Kim D, Pare D, Nair SS (2013) Mechanisms contributing to the induction and storage of Pavlovian fear memories in the lateral amygdala. Learn Mem 20:421-30 [Journal] [PubMed]

   A 1000 cell network model for Lateral Amygdala (Kim et al. 2013) [Model]

Laing CR (2006) On the application of ”equation-free modelling” to neural systems. J Comput Neurosci 20:5-23 [Journal] [PubMed]

Large EW, Crawford JD (2002) Auditory Temporal Computation: Interval Selectivity Based on Post-Inhibitory Rebound J Comput Neurosci 13:125-142 [Journal]

Luthman J, Hoebeek FE, Maex R, Davey N, Adams R, De Zeeuw CI, Steuber V (2011) STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron Cerebellum 10(4):667-82 [Journal] [PubMed]

   Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017) [Model]
   STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011) [Model]

MacLeod KM, Horiuchi TK, Carr CE (2007) A role for short-term synaptic facilitation and depression in the processing of intensity information in the auditory brain stem. J Neurophysiol 97:2863-74 [PubMed]

Migliore M, Lansky P (1999) Long-term potentiation and depression induced by a stochastic conditioning of a model synapse. Biophys J 77:1234-43 [PubMed]

   Stochastic LTP/LTD conditioning of a synapse (Migliore and Lansky 1999) [Model]

Mikula S, Niebur E (2003) Synaptic depression leads to nonmonotonic frequency dependence in the coincidence detector. Neural Comput 15:2339-58 [PubMed]

Moradi K, Moradi K, Ganjkhani M, Hajihasani M, Gharibzadeh S, Kaka G (2013) A fast model of voltage-dependent NMDA receptors J Comput Neurosci 34(3):521-531 [Journal] [PubMed]

   A fast model of voltage-dependent NMDA Receptors (Moradi et al. 2013) [Model]

Morse TM (2008) ModelDB in Computational Neuroscience Education - a research tool as interactive educational media. Interactive Educational Media for the Neural and Cognitive Sciences. Brains, Minds & Media, Lorenz S, Egelhaaf M, ed. pp.bmm1409 [Journal]

Nadim F, Manor Y, Kopell N, Marder E (1999) Synaptic depression creates a switch that controls the frequency of an oscillatory circuit. Proc Natl Acad Sci U S A 96:8206-11 [PubMed]

Puccini GD, Sanchez-Vives MV, Compte A (2007) Selective detection of abrupt input changes by integration of spike-frequency adaptation and synaptic depression in a computational network model. J Physiol Paris 100:1-15 [PubMed]

Steuber V, Jaeger D (2013) Modeling the generation of output by the cerebellar nuclei. Neural Netw 47:112-119 [Journal]

   Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017) [Model]

Sussillo D, Toyoizumi T, Maass W (2007) Self-tuning of neural circuits through short-term synaptic plasticity. J Neurophysiol 97:4079-95 [PubMed]

Vasilaki E, Giugliano M (2014) Emergence of connectivity motifs in networks of model neurons with short- and long-term plastic synapses. PLoS One 9:e84626 [Journal] [PubMed]

   Emergence of Connectivity Motifs in Networks of Model Neurons (Vasilaki, Giugliano 2014) [Model]

Vierling-Claassen D, Cardin JA, Moore CI, Jones SR (2010) Computational modeling of distinct neocortical oscillations driven by cell-type selective optogenetic drive: separable resonant circuits controlled by low-threshold spiking and fast-spiking interneurons. Front Hum Neurosci 4:198 [Journal] [PubMed]

   Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010) [Model]

Wang XJ, Liu Y, Sanchez-Vives MV, McCormick DA (2003) Adaptation and temporal decorrelation by single neurons in the primary visual cortex. J Neurophysiol 89:3279-93 [Journal] [PubMed]

   Temporal decorrelation by intrinsic cellular dynamics (Wang et al 2003) [Model]

(99 refs)