Citation Relationships



Clark BA, Monsivais P, Branco T, London M, Hausser M (2005) The site of action potential initiation in cerebellar Purkinje neurons. Nat Neurosci 8:137-9[PubMed]

References and models cited by this paper

References and models that cite this paper

Armstrong DM, Rawson JA (1979) Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. J Physiol 289:425-48 [PubMed]

Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133-45 [PubMed]

Colbert CM, Johnston D (1996) Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J Neurosci 16:6676-86 [PubMed]

Colbert CM, Pan E (2002) Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nat Neurosci 5:533-8 [PubMed]

COOMBS JS, CURTIS DR, ECCLES JC (1957) The generation of impulses in motoneurones. J Physiol 139:232-49 [PubMed]

Eccles JC, Ito M, Szentagothai J (1967) The Cerebellum as a Neuronal Machine

Gianola S, Savio T, Schwab ME, Rossi F (2003) Cell-autonomous mechanisms and myelin-associated factors contribute to the development of Purkinje axon intracortical plexus in the rat cerebellum. J Neurosci 23:4613-24

Hausser M, Major G, Stuart GJ (2001) Differential shunting of EPSPs by action potentials. Science 291:138-41 [PubMed]

Hausser M, Stuart G, Racca C, Sakmann B (1995) Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron 15:637-47 [PubMed]

Mainen ZF, Joerges J, Huguenard JR, Sejnowski TJ (1995) A model of spike initiation in neocortical pyramidal neurons. Neuron 15:1427-39 [PubMed]

   Spike Initiation in Neocortical Pyramidal Neurons (Mainen et al 1995) [Model]

Somogyi P, Tamas G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26:113-35 [PubMed]

Stuart G, Hausser M (1994) Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13:703-12 [PubMed]

Stuart G, Schiller J, Sakmann B (1997) Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol 505 ( Pt 3):617-32 [PubMed]

Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69-72 [PubMed]

Zhou D, Lambert S, Malen PL, Carpenter S, Boland LM, Bennett V (1998) AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J Cell Biol 143:1295-304 [PubMed]

Ashida G, Abe K, Funabiki K, Konishi M (2007) Passive soma facilitates submillisecond coincidence detection in the owl's auditory system. J Neurophysiol 97:2267-82 [PubMed]

Carnevale NT, Morse TM (1996-2009) Research reports that have used NEURON Web published citations at the NEURON website [Journal]

Cohen A, Shappir J, Yitzchaik S, Spira ME (2006) Experimental and theoretical analysis of neuron-transistor hybrid electrical coupling: the relationships between the electro-anatomy of cultured Aplysia neurons and the recorded field potentials. Biosens Bioelectron 22:656-63 [Journal] [PubMed]

Diwakar S, Magistretti J, Goldfarb M, Naldi G, D`Angelo E (2009) Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells J Neurophysiol 101(2):519-32 [Journal] [PubMed]

   Multicompartmental cerebellar granule cell model (Diwakar et al. 2009) [Model]

Fleidervish IA, Lasser-Ross N, Gutnick MJ, Ross WN (2010) Na+ imaging reveals little difference in action potential-evoked Na+ influx between axon and soma. Nat Neurosci 13:852-60 [Journal] [PubMed]

   Action potential-evoked Na+ influx are similar in axon and soma (Fleidervish et al. 2010) [Model]

Hu W, Tian C, Li T, Yang M, Hou H, Shu Y (2009) Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nat Neurosci 12:996-1002 [Journal] [PubMed]

   Action Potential initiation and backpropagation in Neocortical L5 Pyramidal Neuron (Hu et al. 2009) [Model]

Kim Y, Hsu CL, Cembrowski MS, Mensh BD, Spruston N (2015) Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. Elife [Journal] [PubMed]

   CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015) [Model]

Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11:178-86 [Journal] [PubMed]

   Na+ channel dependence of AP initiation in cortical pyramidal neuron (Kole et al. 2008) [Model]

Masoli S, Solinas S, D'Angelo E (2015) Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Front Cell Neurosci 9:47 [Journal] [PubMed]

   A detailed Purkinje cell model (Masoli et al 2015) [Model]

Meeks JP, Mennerick S (2007) Action potential initiation and propagation in CA3 pyramidal axons. J Neurophysiol 97:3460-72 [PubMed]

Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ (2007) Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. J Neurosci 27:13552-66 [Journal] [PubMed]

   Nav1.6 sodium channel model in globus pallidus neurons (Mercer et al. 2007) [Model]

Royeck M, Horstmann MT, Remy S, Reitze M, Yaari Y, Beck H (2008) Role of Axonal NaV1.6 Sodium Channels in Action Potential Initiation of CA1 Pyramidal Neurons. J Neurophysiol [Journal] [PubMed]

   Axonal NaV1.6 Sodium Channels in AP Initiation of CA1 Pyramidal Neurons (Royeck et al. 2008) [Model]

Shu Y, Duque A, Yu Y, Haider B, McCormick DA (2007) Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. J Neurophysiol 97:746-60 [Journal] [PubMed]

   Intracortical synaptic potential modulation by presynaptic somatic potential (Shu et al. 2006, 2007) [Model]

Traub RD, Middleton SJ, Knopfel T, Whittington MA (2008) Model of very fast (greater than 75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells. Eur J Neurosci 28:1603-16 [Journal]

   Axonal gap junctions produce fast oscillations in cerebellar Purkinje cells (Traub et al. 2008) [Model]

(29 refs)