Citation Relationships



Hund TJ, Rudy Y (2004) Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation 110:3168-74 [PubMed]

   A dynamic model of the canine ventricular myocyte (Hund, Rudy 2004)

References and models cited by this paper

References and models that cite this paper

Aggarwal R, Boyden PA (1995) Diminished Ca2+ and Ba2+ currents in myocytes surviving in the epicardial border zone of the 5-day infarcted canine heart. Circ Res 77:1180-91 [PubMed]

Bányász T, Fülöp L, Magyar J, Szentandrássy N, Varró A, Nánási PP (2003) Endocardial versus epicardial differences in L-type calcium current in canine ventricular myocytes studied by action potential voltage clamp. Cardiovasc Res 58:66-75 [PubMed]

Bassani RA, Mattiazzi A, Bers DM (1995) CaMKII is responsible for activity-dependent acceleration of relaxation in rat ventricular myocytes. Am J Physiol 268:H703-12 [Journal] [PubMed]

Braun AP, Schulman H (1995) The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol 57:417-45

Cabo C, Boyden PA (2003) Electrical remodeling of the epicardial border zone in the canine infarcted heart: a computational analysis. Am J Physiol Heart Circ Physiol 284:H372-84 [Journal] [PubMed]

Collier ML, Levesque PC, Kenyon JL, Hume JR (1996) Unitary Cl- channels activated by cytoplasmic Ca2+ in canine ventricular myocytes. Circ Res 78:936-44 [PubMed]

Cordeiro JM, Greene L, Heilmann C, Antzelevitch D, Antzelevitch C (2004) Transmural heterogeneity of calcium activity and mechanical function in the canine left ventricle. Am J Physiol Heart Circ Physiol 286:H1471-9 [Journal] [PubMed]

Dumaine R, Towbin JA, Brugada P, Vatta M, Nesterenko DV, Nesterenko VV, Brugada J, Brugada R, Antzelevitch C (1999) Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent. Circ Res 85:803-9 [PubMed]

Fabiato A (1985) Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 85:247-89 [PubMed]

Fox JJ, McHarg JL, Gilmour RF (2002) Ionic mechanism of electrical alternans. Am J Physiol Heart Circ Physiol 282:H516-30 [Journal] [PubMed]

   Ionic basis of alternans and Timothy Syndrome (Fox et al. 2002), (Zhu and Clancy 2007) [Model]

Greenstein JL, Winslow RL (2002) An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release. Biophys J 83:2918-45 [Journal] [PubMed]

Greenstein JL, Wu R, Po S, Tomaselli GF, Winslow RL (2000) Role of the calcium-independent transient outward current I(to1) in shaping action potential morphology and duration. Circ Res 87:1026-33 [PubMed]

   Kv4.3, Kv1.4 encoded K(+) channel in heart cells (Greenstein et al 2000) (XPP) [Model]
   Kv4.3, Kv1.4 encoded K channel in heart cells & tachy. (Winslow et al 1999, Greenstein et al 2000) [Model]

Hagemann D, Kuschel M, Kuramochi T, Zhu W, Cheng H, Xiao RP (2000) Frequency-encoding Thr17 phospholamban phosphorylation is independent of Ser16 phosphorylation in cardiac myocytes. J Biol Chem 275:22532-6 [Journal] [PubMed]

Hanson PI, Meyer T, Stryer L, Schulman H (1994) Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron 12:943-56 [PubMed]

Hirano Y, Hiraoka M (2003) Ca2+ entry-dependent inactivation of L-type Ca current: a novel formulation for cardiac action potential models. Biophys J 84:696-708 [Journal] [PubMed]

Hund TJ, Kucera JP, Otani NF, Rudy Y (2001) Ionic charge conservation and long-term steady state in the Luo-Rudy dynamic cell model. Biophys J 81:3324-31 [Journal] [PubMed]

Kneller J, Ramirez RJ, Chartier D, Courtemanche M, Nattel S (2002) Time-dependent transients in an ionically based mathematical model of the canine atrial action potential. Am J Physiol Heart Circ Physiol 282:H1437-51 [Journal] [PubMed]

Kuratomi S, Matsuoka S, Sarai N, Powell T, Noma A (2003) Involvement of Ca2+ buffering and Na+/Ca2+ exchange in the positive staircase of contraction in guinea-pig ventricular myocytes. Pflugers Arch 446:347-55 [Journal] [PubMed]

Langer GA, Peskoff A (1996) Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell. Biophys J 70:1169-82 [Journal] [PubMed]

Le Peuch CJ, Haiech J, Demaille JG (1979) Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium--calmodulin-dependent phosphorylations. Biochemistry 18:5150-7 [PubMed]

Li L, Satoh H, Ginsburg KS, Bers DM (1997) The effect of Ca(2+)-calmodulin-dependent protein kinase II on cardiac excitation-contraction coupling in ferret ventricular myocytes. J Physiol 501 ( Pt 1):17-31

Liu DW, Antzelevitch C (1995) Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res 76:351-65 [PubMed]

Liu DW, Gintant GA, Antzelevitch C (1993) Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res 72:671-87 [PubMed]

Lokuta AJ, Rogers TB, Lederer WJ, Valdivia HH (1995) Modulation of cardiac ryanodine receptors of swine and rabbit by a phosphorylation-dephosphorylation mechanism. J Physiol 487 ( Pt 3):609-22

Lue WM, Boyden PA (1992) Abnormal electrical properties of myocytes from chronically infarcted canine heart. Alterations in Vmax and the transient outward current. Circulation 85:1175-88 [PubMed]

Lukyanenko V, Györke I, Györke S (1996) Regulation of calcium release by calcium inside the sarcoplasmic reticulum in ventricular myocytes. Pflugers Arch 432:1047-54 [PubMed]

Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74:1071-96 [PubMed]

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]

Maier LS, Bers DM (2002) Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond. J Mol Cell Cardiol 34:919-39 [PubMed]

Maltsev VA, Sabbah HN, Undrovinas AI (2001) Late sodium current is a novel target for amiodarone: studies in failing human myocardium. J Mol Cell Cardiol 33:923-32 [Journal] [PubMed]

Odermatt A, Kurzydlowski K, MacLennan DH (1996) The vmax of the Ca2+-ATPase of cardiac sarcoplasmic reticulum (SERCA2a) is not altered by Ca2+/calmodulin-dependent phosphorylation or by interaction with phospholamban. J Biol Chem 271:14206-13 [PubMed]

Piwnica-Worms D, Jacob R, Horres CR, Lieberman M (1985) Potassium-chloride cotransport in cultured chick heart cells. Am J Physiol 249:C337-44 [Journal] [PubMed]

Rubart M, Lopshire JC, Fineberg NS, Zipes DP (2000) Changes in left ventricular repolarization and ion channel currents following a transient rate increase superimposed on bradycardia in anesthetized dogs. J Cardiovasc Electrophysiol 11:652-64 [PubMed]

Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195-215 [PubMed]

Sanguinetti MC, Jurkiewicz NK, Scott A, Siegl PK (1991) Isoproterenol antagonizes prolongation of refractory period by the class III antiarrhythmic agent E-4031 in guinea pig myocytes. Mechanism of action. Circ Res 68:77-84 [PubMed]

Sham JS, Song LS, Chen Y, Deng LH, Stern MD, Lakatta EG, Cheng H (1998) Termination of Ca2+ release by a local inactivation of ryanodine receptors in cardiac myocytes. Proc Natl Acad Sci U S A 95:15096-101 [PubMed]

Shannon TR, Guo T, Bers DM (2003) Ca2+ scraps: local depletions of free [Ca2+] in cardiac sarcoplasmic reticulum during contractions leave substantial Ca2+ reserve. Circ Res 93:40-5 [Journal] [PubMed]

Sipido KR, Volders PG, de Groot SH, Verdonck F, Van de Werf F, Wellens HJ, Vos MA (2000) Enhanced Ca(2+) release and Na/Ca exchange activity in hypertrophied canine ventricular myocytes: potential link between contractile adaptation and arrhythmogenesis. Circulation 102:2137-44 [PubMed]

Smith GD, Keizer JE, Stern MD, Lederer WJ, Cheng H (1998) A simple numerical model of calcium spark formation and detection in cardiac myocytes. Biophys J 75:15-32 [Journal] [PubMed]

Stengl M, Volders PG, Thomsen MB, Spätjens RL, Sipido KR, Vos MA (2003) Accumulation of slowly activating delayed rectifier potassium current (IKs) in canine ventricular myocytes. J Physiol 551:777-86 [Journal] [PubMed]

Stern MD (1992) Theory of excitation-contraction coupling in cardiac muscle. Biophys J 63:497-517 [Journal] [PubMed]

Sun H, Leblanc N, Nattel S (1997) Mechanisms of inactivation of L-type calcium channels in human atrial myocytes. Am J Physiol 272:H1625-35 [Journal] [PubMed]

Toyofuku T, Curotto Kurzydlowski K, Narayanan N, MacLennan DH (1994) Identification of Ser38 as the site in cardiac sarcoplasmic reticulum Ca(2+)-ATPase that is phosphorylated by Ca2+/calmodulin-dependent protein kinase. J Biol Chem 269:26492-6 [PubMed]

Varro A, Baláti B, Iost N, Takács J, Virág L, Lathrop DA, Csaba L, Tálosi L, Papp JG (2000) The role of the delayed rectifier component IKs in dog ventricular muscle and Purkinje fibre repolarization. J Physiol 523 Pt 1:67-81 [PubMed]

Viswanathan PC, Shaw RM, Rudy Y (1999) Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study. Circulation 99:2466-74 [PubMed]

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]

Weber CR, Ginsburg KS, Philipson KD, Shannon TR, Bers DM (2001) Allosteric regulation of Na/Ca exchange current by cytosolic Ca in intact cardiac myocytes. J Gen Physiol 117:119-31 [PubMed]

Wegener AD, Simmerman HK, Lindemann JP, Jones LR (1989) Phospholamban phosphorylation in intact ventricles. Phosphorylation of serine 16 and threonine 17 in response to beta-adrenergic stimulation. J Biol Chem 264:11468-74 [PubMed]

Wehrens XH, Lehnart SE, Reiken SR, Marks AR (2004) Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 94:e61-70 [Journal] [PubMed]

Wier WG, Egan TM, López-López JR, Balke CW (1994) Local control of excitation-contraction coupling in rat heart cells. J Physiol 474:463-71 [PubMed]

Winslow RL, Rice J, Jafri S, Marbán E, O'Rourke B (1999) Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ Res 84:571-86 [PubMed]

   Kv4.3, Kv1.4 encoded K channel in heart cells & tachy. (Winslow et al 1999, Greenstein et al 2000) [Model]

Witcher DR, Kovacs RJ, Schulman H, Cefali DC, Jones LR (1991) Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem 266:11144-52 [PubMed]

Yuan W, Bers DM (1994) Ca-dependent facilitation of cardiac Ca current is due to Ca-calmodulin-dependent protein kinase. Am J Physiol 267:H982-93 [Journal] [PubMed]

Zygmunt AC, Eddlestone GT, Thomas GP, Nesterenko VV, Antzelevitch C (2001) Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am J Physiol Heart Circ Physiol 281:H689-97

Greenstein JL, Hinch R, Winslow RL (2006) Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte. Biophys J 90:77-91 [Journal] [PubMed]

   Excitation-contraction coupling in an integrative heart cell model (Greenstein et al 2006) [Model]

Kharche S, Yu J, Lei M, Zhang H (2011) A mathematical model of action potentials of mouse sinoatrial node cells with molecular bases. Am J Physiol Heart Circ Physiol 301:H945-63 [Journal] [PubMed]

   Biophysically detailed model of the mouse sino-atrial node cell (Kharche et al. 2011) [Model]

Mahajan A, Shiferaw Y, Sato D, Baher A, Olcese R, Xie LH, Yang MJ, Chen PS, Restrepo JG, Karma A, Garfinkel A, Qu Z, Weiss JN (2008) A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophys J 94:392-410 [Journal] [PubMed]

Silva J, Rudy Y (2005) Subunit interaction determines IKs participation in cardiac repolarization and repolarization reserve. Circulation 112:1384-91 [Journal] [PubMed]

   Role of KCNQ1 and IKs in cardiac repolarization (Silva, Rudy 2005) [Model]
   Role of KCNQ1 and IKs in cardiac repolarization (Silva, Rudy 2005) (XPP) [Model]

(56 refs)