Citation Relationships



Golomb D, Shedmi A, Curtu R, Ermentrout GB (2006) Persistent synchronized bursting activity in cortical tissues with low magnesium concentration: a modeling study J Neurophysiol 95:1049-1067[PubMed]

   Persistent synchronized bursting activity in cortical tissues (Golomb et al 2005)

References and models cited by this paper

References and models that cite this paper

Amit DJ, Brunel N (2000) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb Cortex 7:237-52 [PubMed]

Beierlein M, Gibson JR, Connors BW (2003) Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 90:2987-3000 [Journal] [PubMed]

Bertram R, Butte MJ, Kiemel T, Sherman A (1995) Topological and phenomenological classification of bursting oscillations. Bull Math Biol 57:413-39 [PubMed]

Castro-alamancos MA, Rigas P (2004) Cellular mechanisms of 7-14 Hz oscillations in the motorcortex Soc Neurosci Abstracts 30:641

Compte A, Brunel N, Goldman-Rakic PS, Wang XJ (2000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex 10:910-23 [PubMed]

Connors BW, Amitai Y (1995) Synchronized excitation and inhibition driven by intrinsicallybursting neurons in neocortex The Cortical Neuron, Gutnick MJ:Mody I, ed.

Connors BW, Gutnick MJ, Prince DA (1982) Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 48:1302-20 [Journal] [PubMed]

Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1:195-230 [Journal] [PubMed]

   Application of a common kinetic formalism for synaptic models (Destexhe et al 1994) [Model]
   Kinetic synaptic models applicable to building networks (Destexhe et al 1998) [Model]

Ermentrout GB (2002) Simulating, Analyzing, and Animating Dynamical System: A Guide to XPPAUT for Researchers and Students Society for Industrial and Applied Mathematics (SIAM)

Fleidervish IA, Binshtok AM, Gutnick MJ (1998) Functionally distinct NMDA receptors mediate horizontal connectivity within layer 4 of mouse barrel cortex. Neuron 21:1055-65 [PubMed]

Fleidervish IA, Friedman A, Gutnick MJ (1996) Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J Physiol 493 ( Pt 1):83-97 [PubMed]

Fleidervish IA, Gutnick MJ (1996) Kinetics of slow inactivation of persistent sodium current in layer V neurons of mouse neocortical slices. J Neurophysiol 76:2125-30 [Journal] [PubMed]

Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J Neurophysiol 61:331-49 [Journal] [PubMed]

Gil Z, Amitai Y (1996) Properties of convergent thalamocortical and intracortical synaptic potentials in single neurons of neocortex. J Neurosci 16:6567-78 [PubMed]

Golomb D (1998) Models of neuronal transient synchrony during propagation of activity through neocortical circuitry. J Neurophysiol 79:1-12 [Journal] [PubMed]

Golomb D, Amitai Y (1997) Propagating neuronal discharges in neocortical slices: computational and experimental study. J Neurophysiol 78:1199-211 [Journal] [PubMed]

Golomb D, Ermentrout GB (1999) Continuous and lurching traveling pulses in neuronal networks with delay and spatially decaying connectivity. Proc Natl Acad Sci U S A 96:13480-5 [PubMed]

Golomb D, Hansel D (2000) The number of synaptic inputs and the synchrony of large, sparse neuronal networks. Neural Comput 12:1095-139 [PubMed]

Golomb D, Hansel D, Mato G (2001) Mechanisms of synchrony of neural activity in large networks Handbook of Biological Physics, Moss F:Gielen S, ed. pp.887

Golomb D, Rinzel J (1993) Dynamics of globally coupled inhibitory neurons with heterogeneity. PHYSICAL REVIEW. E. STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 48:4810-4814 [PubMed]

Golomb D, Rinzel J (1994) Clustering in globally coupled inhibitory neurons Physica D 72:259-282

Golomb D, Wang XJ, Rinzel J (1996) Propagation of spindle waves in a thalamic slice model. J Neurophysiol 75:750-69 [Journal] [PubMed]

Hansel D, Mato G (2001) Existence and stability of persistent states in large neuronal networks. Phys Rev Lett 86:4175-8 [PubMed]

Hansel D, Mato G (2003) Asynchronous states and the emergence of synchrony in large networks of interacting excitatory and inhibitory neurons. Neural Comput 15:1-56 [PubMed]

Hansel D, Sompolinsky H (1996) Chaos and synchrony in a model of a hypercolumn in visual cortex. J Comput Neurosci 3:7-34 [Journal] [PubMed]

Hoppensteadt FC, Izhikevich EM (1997) Weakly Connected Neural Networks :90

Izhikevich EM (2000) Neural excitability, spiking and bursting Int J Bifurcat Chaos Appl Sci Eng 10:1171-1266

Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10:3178-82 [PubMed]

Johnston D, Wu SMS (1995) Foundations of Cellular Neurophysiology with simulations and illustrations by Richard Gray Foundations of Cellular Neurophysiology

Jung R, Kiemel T, Cohen AH (1996) Dynamic behavior of a neural network model of locomotor control in the lamprey. J Neurophysiol 75:1074-86 [Journal] [PubMed]

Kawaguchi Y (2001) Distinct firing patterns of neuronal subtypes in cortical synchronized activities. J Neurosci 21:7261-72

Latham PE, Richmond BJ, Nelson PG, Nirenberg S (2000) Intrinsic dynamics in neuronal networks. I. Theory. J Neurophysiol 83:808-27 [Journal] [PubMed]

Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363-6 [Journal] [PubMed]

   Pyramidal Neuron Deep, Superficial; Aspiny, Stellate (Mainen and Sejnowski 1996) [Model]

Markram H, Tsodyks M (1996) Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382:807-10 [PubMed]

McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782-806 [Journal] [PubMed]

McCormick DA, Shu Y, Hasenstaub A, Sanchez-Vives M, Badoual M, Bal T (2003) Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cereb Cortex 13:1219-31 [PubMed]

Pinsky PF, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci 1:39-60 [Journal] [PubMed]

   CA3 pyramidal cell: rhythmogenesis in a reduced Traub model (Pinsky, Rinzel 1994) [Model]

Rinzel J, Ermentrout B (1998) Analysis of neural excitability and oscillations. Methods In Neuronal Modeling 2nd Edition, Segev I, Koch C, ed. pp.251

Sah P (1996) Ca(2+)-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci 19:150-4 [PubMed]

Silva LR, Amitai Y, Connors BW (1991) Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science 251:432-5 [PubMed]

Steriade M, Nunez A, Amzica F (1993) 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252-65 [PubMed]

Stern P, Edwards FA, Sakmann B (1992) Fast and slow components of unitary EPSCs on stellate cells elicited by focal stimulation in slices of rat visual cortex. J Physiol 449:247-78 [PubMed]

Storm JF (1990) Potassium currents in hippocampal pyramidal cells. Prog Brain Res 83:161-87 [PubMed]

Strogatz SH (1994) Nonlinear Dynamics And Chaos With Applications To Physics, Biology, Chemistry, And Engineering

Sutor B, Hablitz JJ (1989) EPSPs in rat neocortical neurons in vitro. II. Involvement of N-methyl-D-aspartate receptors in the generation of EPSPs. J Neurophysiol 61:621-34 [Journal] [PubMed]

Tabak J, Senn W, O'Donovan MJ, Rinzel J (2000) Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network. J Neurosci 20:3041-56 [PubMed]

Terman D (1992) The transition from bursting to continuous spiking in excitable membrane models J Nonlinear Sci 2:135-182

Traub RD, Jefferys JG, Whittington MA (1994) Enhanced NMDA conductance can account for epileptiform activity induced by low Mg2+ in the rat hippocampal slice. J Physiol 478 Pt 3:379-93 [PubMed]

Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635-50 [Journal] [PubMed]

Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A 94:719-23 [PubMed]

Vaadia E, Haalman I, Abeles M, Bergman H, Prut Y, Slovin H, Aertsen A (1995) Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 373:515-8 [PubMed]

van Vreeswijk C, Hansel D (2001) Patterns of synchrony in neural networks with spike adaptation. Neural Comput 13:959-92 [PubMed]

Wang XJ (1999) Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J Neurosci 19:9587-603 [PubMed]

Wang XJ (2001) Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci 24:455-63 [PubMed]

Wang XJ, Buzsaki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16:6402-13 [Journal] [PubMed]

   Gamma oscillations in hippocampal interneuron networks (Wang, Buzsaki 1996) [Model]

Wang XJ, Rinzel J (1993) Spindle rhythmicity in the reticularis thalami nucleus: synchronization among mutually inhibitory neurons. Neuroscience 53:899-904 [PubMed]

Wu JY, Guan L, Tsau Y (1999) Propagating activation during oscillations and evoked responses in neocortical slices. J Neurosci 19:5005-15 [PubMed]

Durstewitz D, Gabriel T (2006) Dynamical Basis of Irregular Spiking in NMDA-Driven Prefrontal Cortex Neurons Cereb Cortex 17:894-908 [Journal] [PubMed]

   Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006) [Model]

Harish O, Golomb D (2010) Control of the Firing Patterns of Vibrissa Motoneurons by Modulatory and Phasic Synaptic Inputs: a Modeling Study. J Neurophysiol 103:2684-2699 [Journal] [PubMed]

   Control of vibrissa motoneuron firing (Harish and Golomb 2010) [Model]

Huang CW, Huang CC, Lin MW, Tsai JJ, Wu SN (2008) The synergistic inhibitory actions of oxcarbazepine on voltage-gated sodium and potassium currents in differentiated NG108-15 neuronal cells and model neurons. Int J Neuropsychopharmacol 11:597-610 [Journal] [PubMed]

   Synergistic inhibitory action of oxcarbazepine on INa and IK (Huang et al. 2008) [Model]

Maki-Marttunen T, Acimovic J, Ruohonen K, Linne ML (2013) Structure-Dynamics Relationships in Bursting Neuronal Networks Revealed Using a Prediction Framework PLOS ONE 8(7):e69373 [Journal]

   Structure-dynamics relationships in bursting neuronal networks revealed (Mäki-Marttunen et al. 2013) [Model]

(61 refs)