Citation Relationships



Debanne D, Gähwiler BH, Thompson SM (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol 507 ( Pt 1):237-47 [PubMed]

References and models cited by this paper

References and models that cite this paper

Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3 Suppl:1178-83 [Journal] [PubMed]

Aoki T, Aoyagi T (2007) Synchrony-induced switching behavior of spike pattern attractors created by spike-timing-dependent plasticity. Neural Comput 19:2720-38 [Journal] [PubMed]

Appleby PA, Elliott T (2005) Synaptic and temporal ensemble interpretation of spike-timing-dependent plasticity. Neural Comput 17:2316-36 [Journal] [PubMed]

Baker JL, Olds JL (2007) Theta phase precession emerges from a hybrid computational model of a CA3 place cell. Cogn Neurodyn 1:237-48 [Journal] [PubMed]

   Theta phase precession in a model CA3 place cell (Baker and Olds 2007) [Model]

Baker JL, Perez-Rosello T, Migliore M, Barrionuevo G, Ascoli GA (2011) A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. J Comput Neurosci 31:137-58 [Journal] [PubMed]

   A model of unitary responses from A/C and PP synapses in CA3 pyramidal cells (Baker et al. 2010) [Model]

Bohte SM, Mozer MC (2007) Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity. Neural Comput 19:371-403 [Journal] [PubMed]

Brzosko Z, Zannone S, Schultz W, Clopath C, Paulsen O (2017) Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation. Elife [Journal] [PubMed]

   Sequential neuromodulation of Hebbian plasticity in reward-based navigation (Brzosko et al 2017) [Model]

Burkitt AN, Meffin H, Grayden DB (2004) Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural Comput 16:885-940 [Journal] [PubMed]

Franks KM, Sejnowski TJ (2002) Complexity of calcium signaling in synaptic spines. Bioessays 24:1130-44 [Journal] [PubMed]

Gerstner W, Kistler WM (2002) Mathematical formulations of Hebbian learning. Biol Cybern 87:404-15 [Journal] [PubMed]

Graupner M, Brunel N (2007) STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS Comput Biol 3:e221 [Journal] [PubMed]

   CaMKII system exhibiting bistability with respect to calcium (Graupner and Brunel 2007) [Model]

Hosaka R, Araki O, Ikeguchi T (2008) STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns. Neural Comput 20:415-35 [Journal] [PubMed]

Karmarkar UR, Buonomano DV (2002) A model of spike-timing dependent plasticity: one or two coincidence detectors? J Neurophysiol 88:507-13 [Journal] [PubMed]

Karmarkar UR, Najarian MT, Buonomano DV (2002) Mechanisms and significance of spike-timing dependent plasticity. Biol Cybern 87:373-82 [Journal] [PubMed]

Letzkus JJ, Kampa BM, Stuart GJ (2006) Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J Neurosci 26:10420-9 [Journal] [PubMed]

   STDP depends on dendritic synapse location (Letzkus et al. 2006) [Model]

Lörincz A, Buzsáki G (2000) Two-phase computational model training long-term memories in the entorhinal-hippocampal region. Ann N Y Acad Sci 911:83-111 [PubMed]

Migliore M, Hoffman DA, Magee JC, Johnston D (1999) Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput Neurosci 7:5-15 [PubMed]

   CA1 pyramidal neuron (Migliore et al 1999) [Model]

Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19:1437-67 [Journal] [PubMed]

Narayanan R, Chattarji S (2010) Computational analysis of the impact of chronic stress on intrinsic and synaptic excitability in the hippocampus. J Neurophysiol 103:3070-83 [Journal] [PubMed]

   Impact of dendritic atrophy on intrinsic and synaptic excitability (Narayanan & Chattarji, 2010) [Model]

Saudargiene A, Porr B, Wörgötter F (2004) How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural Comput 16:595-625 [Journal] [PubMed]

Sejnowski TJ, Destexhe A (2000) Why do we sleep? Brain Res 886:208-223 [PubMed]

Shen YS, Gao H, Yao H (2005) Spike timing-dependent synaptic plasticity in visual cortex: a modeling study. J Comput Neurosci 18:25-39 [Journal] [PubMed]

Stuart GJ, Häusser M (2001) Dendritic coincidence detection of EPSPs and action potentials. Nat Neurosci 4:63-71 [Journal] [PubMed]

Troyer TW, Doupe AJ (2000) An associational model of birdsong sensorimotor learning II. Temporal hierarchies and the learning of song sequence. J Neurophysiol 84:1224-39 [Journal] [PubMed]

Troyer TW, Doupe AJ (2000) An associational model of birdsong sensorimotor learning I. Efference copy and the learning of song syllables. J Neurophysiol 84:1204-23 [Journal] [PubMed]

Veredas FJ, Vico FJ, Alonso JM (2005) Factors determining the precision of the correlated firing generated by a monosynaptic connection in the cat visual pathway. J Physiol 567:1057-78 [Journal] [PubMed]

Watanabe S, Hoffman DA, Migliore M, Johnston D (2002) Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proc Natl Acad Sci U S A 99:8366-71 [Journal] [PubMed]

   CA1 pyramidal neuron: conditional boosting of dendritic APs (Watanabe et al 2002) [Model]

Wörgötter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17:245-319 [Journal] [PubMed]

Zhou YD, Acker CD, Netoff TI, Sen K, White JA (2005) Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression. Proc Natl Acad Sci U S A 102:19121-5 [Journal] [PubMed]

(29 refs)