Citation Relationships



Edwards FR, Hirst GD (2006) An electrical analysis of slow wave propagation in the guinea-pig gastric antrum. J Physiol 571:179-89 [PubMed]

   Slow wave propagation in the guinea-pig gastric antrum (Hirst et al. 2006, Edwards and Hirst 2006)

References and models cited by this paper

References and models that cite this paper

Cousins HM, Edwards FR, Hickey H, Hill CE, Hirst GD (2003) Electrical coupling between the myenteric interstitial cells of Cajal and adjacent muscle layers in the guinea-pig gastric antrum. J Physiol 550:829-44 [Journal] [PubMed]

Cousins HM, Edwards FR, Hirst GD, Wendt IR (1993) Cholinergic neuromuscular transmission in the longitudinal muscle of the guinea-pig ileum. J Physiol 471:61-86 [PubMed]

Davenport HW (1989) Gastrointestinal physiology, 1895-1975: motility Handbook of Physiology, Section 6, Gastrointestinal System :1-101

Dickens EJ, Edwards FR, Hirst GD (2001) Selective knockout of intramuscular interstitial cells reveals their role in the generation of slow waves in mouse stomach. J Physiol 531:827-33 [PubMed]

Dickens EJ, Hirst GD, Tomita T (1999) Identification of rhythmically active cells in guinea-pig stomach. J Physiol 514 ( Pt 2):515-31 [PubMed]

Edwards FR, Hirst GD (2003) Mathematical description of regenerative potentials recorded from circular smooth muscle of guinea pig antrum. Am J Physiol Gastrointest Liver Physiol 285:G661-70 [Journal] [PubMed]

Edwards FR, Hirst GD (2005) An electrical description of the generation of slow waves in the antrum of the guinea-pig. J Physiol 564:213-32 [Journal] [PubMed]

Goto K, Matsuoka S, Noma A (2004) Two types of spontaneous depolarizations in the interstitial cells freshly prepared from the murine small intestine. J Physiol 559:411-22 [Journal] [PubMed]

Hashitani H, Garcia-Londoño AP, Hirst GD, Edwards FR (2005) Atypical slow waves generated in gastric corpus provide dominant pacemaker activity in guinea pig stomach. J Physiol 569:459-65 [Journal] [PubMed]

Hennig GW, Hirst GD, Park KJ, Smith CB, Sanders KM, Ward SM, Smith TK (2004) Propagation of pacemaker activity in the guinea-pig antrum. J Physiol 556:585-99 [Journal] [PubMed]

Hirst GD, Edwards FR (2001) Generation of slow waves in the antral region of guinea-pig stomach--a stochastic process. J Physiol 535:165-80 [PubMed]

Hirst GD, Garcia-Londoño AP, Edwards FR (2006) Propagation of slow waves in the guinea-pig gastric antrum. J Physiol 571:165-77 [Journal] [PubMed]

   Slow wave propagation in the guinea-pig gastric antrum (Hirst et al. 2006, Edwards and Hirst 2006) [Model]

HODGKIN AL, HUXLEY AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-44 [Journal] [PubMed]

   Squid axon (Hodgkin, Huxley 1952) (LabAXON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (NEURON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SNNAP) [Model]
   Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other) [Model]

Jack JJB, Noble D, Tsien RW (1983) Linear cable theory Electrical Current Flow in Excitable Cells, Jack JJB:Noble D:Tsien RW, ed. pp.25

Jiménez M, Borderies JR, Vergara P, Wang Y, Daniel EE (1999) Slow waves in circular muscle of porcine ileum: structural and electrophysiological studies. Am J Physiol 276:G393-406 [Journal] [PubMed]

Kito Y, Fukuta H, Suzuki H (2002) Components of pacemaker potentials recorded from the guinea pig stomach antrum. Pflugers Arch 445:202-17 [Journal] [PubMed]

Kito Y, Suzuki H (2003) Properties of pacemaker potentials recorded from myenteric interstitial cells of Cajal distributed in the mouse small intestine. J Physiol 553:803-18 [Journal] [PubMed]

Kito Y, Ward SM, Sanders KM (2005) Pacemaker potentials generated by interstitial cells of Cajal in the murine intestine. Am J Physiol Cell Physiol 288:C710-20 [Journal] [PubMed]

Stevens RJ, Publicover NG, Smith TK (1999) Induction and organization of Ca2+ waves by enteric neural reflexes. Nature 399:62-6 [Journal] [PubMed]

Szurszewski JH (1981) Electrical basis for gastrointestinal motility Physiology of the Gastrointestinal Tract, Johnson R, ed. pp.1435

Ward SM, Dixon RE, de Faoite A, Sanders KM (2004) Voltage-dependent calcium entry underlies propagation of slow waves in canine gastric antrum. J Physiol 561:793-810 [Journal] [PubMed]

Barth BB, Henriquez CS, Grill WM, Shen X (2017) Electrical stimulation of gut motility guided by an in silico model. J Neural Eng 14:066010 [Journal] [PubMed]

   Neuromuscular network model of gut motility (Barth et al 2017) [Model]

(22 refs)