Citation Relationships



Doi S, Kumagai S (2005) Generation of Very Slow Neuronal Rhythms and Chaos Near the Hopf Bifurcation in Single Neuron Models J Comp Neurosci 19:325-356

References and models cited by this paper

References and models that cite this paper

Adams P (1982) Voltage-dependent conductances of vertebrate neurones TINS :116-119

Baer SM, Erneux T (1986) Singular Hopf bifurcation to relaxation oscillations. Siam J Appl Math 46:721-739

Baer SM, Erneux T, Rinzel J (1989) The slow passage through Hopf bifurcation: delay, memory ecects, and resonance. J Appl Math 49:55-71

Benoit E, Callot JL, Diener F, Diener M (1981) Chasse au canards Collect Math 31:37-119

Bertram R, Butte MJ, Kiemel T, Sherman A (1995) Topological and phenomenological classification of bursting oscillations. Bull Math Biol 57:413-39 [PubMed]

Braaksma B (1998) Singular Hopf bifurcation in systems with fast and slow variables J Nonlinear Sci 8:457-490

Canavier CC, Clark JW, Byrne JH (1991) Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters. J Neurophysiol 66:2107-24 [Journal] [PubMed]

   Bursting activity of neuron R15 in Aplysia (Canavier et al 1991, Butera et al 1995) [Model]

Carpenter GA (1977) A geometric approach to singular perturbation problems with applications to nerve impulse equations J Diff Eqn 23:335-367

Chay TR, Keizer J (1983) Minimal model for membrane oscillations in the pancreatic beta-cell. Biophys J 42:181-90 [Journal] [PubMed]

Connor JA, Walter D, McKown R (1977) Neural repetitive firing: modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons. Biophys J 18:81-102 [Journal] [PubMed]

Crill WE, Schwindt PC (1983) Active currents in mammalian central neurons. TINS :236-240

Cronin J (1987) Mathematical aspects of Hodgkin-Huxley neural theory.

Doedel E, Wang X, Fairgrieve T (1995) AUTO94: Software for continuation and bifurcation problems in ordinary differential equations CRPC-95

Doi S, Inoue J, Kumagai S (2004) Chaotic spiking in the Hodgkin-Huxley nerve model with slow inactivation of the sodium current. J Integr Neurosci 3:207-25 [PubMed]

Doi S, Inoue J, Sato S, Smith CE (1999) Bifurcation analysis of neuronal excitability and oscillations Modeling in the Neurosciences: From Ionic Channels to Neural Networks, Poznanski R, ed. pp.443

Doi S, Kumagai S (2001) Nonlinear dynamics of small-scale biophysical neural networks Biophysical Neural Networks: Foundations of Integrative Neuroscience, Poznanski R, ed. pp.261

Doi S, Nabetani S, Kumagai S (2001) Complex nonlinear dynamics of the Hodgkin-Huxley equations induced by time scale changes. Biol Cybern 85:51-64 [Journal] [PubMed]

Drover J, Rubin J, Su J, Ermentrout B (2005) Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies SIAM J Appl Math 65:65-92

Ermentrout B (1996) Type I membranes, phase resetting curves, and synchrony. Neural Comput 8:979-1001 [PubMed]

Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations J Diff Eqn 31:53-98

FITZHUGH R (1960) Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J Gen Physiol 43:867-96 [PubMed]

Fitzhugh R (1961) Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys J 1:445-66 [PubMed]

Fukai H, Doi S, Nomura T, Sato S (2000) Hopf bifurcations in multiple-parameter space of the Hodgkin-Huxley equations I. Global organization of bistable periodic solutions. Biol Cybern 82:215-22 [Journal] [PubMed]

Fukai H, Nomura T, Doi S, Sato S (2000) Hopf bifurcations in multiple-parameter space of the hodgkin-huxley equations II. Singularity theoretic approach and highly degenerate bifurcations. Biol Cybern 82:223-9 [Journal] [PubMed]

Gerber B, Jakobsson E (1993) Functional significance of the A-current. Biol Cybern 70:109-14 [PubMed]

Guckenheimer J (1996) Towards a global theory of singularly perturbed dynamical systems Prog Non Diff Eqn Appl 19:213-225

Guckenheimer J, Harris-Warrick R, Peck J, Willms A (1997) Bifurcation, bursting, and spike frequency adaptation. J Comput Neurosci 4:257-77 [PubMed]

Guckenheimer J, Hofman K, Weckesserand W (2000) Numerical computations of canards Int J Bifurcation And Chaos 2:2669-2689

Guckenheimer J, Holmes P (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 2nd edition.

Guckenheimer J, Labouriau IS (1993) Bifurcation of the Hodgkin and Huxley equations: a new twist Bull Math Biol 55:937-952

Guckenheimer J, Oliva RA (2002) Chaos in the Hodgkin-Huxley model SIAM J Applied Dynamical Systems 1:105-114

Guckenheimer J, Willms AR (2000) Asymptotic analysis of subcritical Hopf-homoclinic bifurcation Physica D 139:195-216

Gutkin BS, Ermentrout GB (1998) Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural Comput 10:1047-65 [PubMed]

Hassard B (1978) Bifurcation of periodic solutions of Hodgkin-Huxley model for the squid giant axon. J Theor Biol 71:401-20 [PubMed]

Hayashi H, Izhizuka S (1992) Chaotic nature of bursting discharges in the Onchidium pacemaker neuron J Theor Biol 156:269-291

Hille B (1992) Potassium channels and chloride channels Ionic Channels of Excitable Membrane, Hille B, ed. pp.115

Hodgkin AL (1948) The local electric changes associated with repetitive action in a non-medullated axon. J Physiol 107:165-81 [PubMed]

HODGKIN AL, HUXLEY AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-44 [Journal] [PubMed]

   Squid axon (Hodgkin, Huxley 1952) (LabAXON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (NEURON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SNNAP) [Model]
   Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other) [Model]

Honerkamp J, Mutschler G, Seitz R (1985) Coupling of a slow and a fast oscillator can generate bursting. Bull Math Biol 47:1-21 [PubMed]

Izhikevich EM (2000) Neural excitability, spiking and bursting Int J Bifurcat Chaos Appl Sci Eng 10:1171-1266

Jones C (1996) Geometric singular perturbation theory Dynamical Systems, Lecture Notes in Mathematics, Johnson R, ed.

Jones C, Kopell N (1994) Tracking invariant manifolds with differential forms J Diff Eqn 108:64-88

Keener J, Sneyd J (1998) Mathematical Physiology Interdisciplinary Applied Mathematics

Llinás RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654-64 [PubMed]

Nagumo J, Arimoto S, Yoshizawa S (1962) An Active Pulse Transmission Line Simulating Nerve Axon Proceedings of the IRE 50:2061-2070 [Journal]

Neishtadt AI (1987) On delayed stability loss under dynamical bifurcations I. J Diff Eqn 23:1385-1390

Neishtadt AI (1988) Persistence of stability loss for dynamical bifurcations II Diff Eqn 24:171-176

Noble D (1995) The development of mathematical models of the heart Chaos Sol Frac 5:321-333

Plant RE (1976) The geometry of the Hodgkin-Huxley Model. Comput Programs Biomed 6:85-91 [PubMed]

Rinzel J (1978) On repetitive activity in nerve. Fed Proc 37:2793-802 [PubMed]

Rinzel J (1990) Discussion: Electrical excitability of cells, theory and experiment: Review of the Hodgkin-Huxley foundation and update Bull Math Biol 52:5-23

Rinzel J, Ermentrout GB (1989) Analysis of neuronal excitability and oscillations Methods In Neuronal Modeling: From Synapses To Networks, Koch C:Segev I, ed. pp.135

Rinzel J, Lee Y (1986) On different mechanisms for membranepotential bursters Nonlinear Oscillations in Biology and Chemistry, Othmer H, ed.

Rinzel J, Miller R (1980) Numerical calculation of stable and unstable periodic solutions to the Hodgkin-Huxley equations Math Biosci 49:27-59

Rinzel J, Troy WC (1983) A one-variable map analysis of bursting in the Belousov-Zhabotinskii reaction Contem Math 17:411-427

Rush ME, Rinzel J (1995) The potassium A-current, low firing rates and rebound excitation in Hodgkin-Huxley models. Bull Math Biol 57:899-929 [PubMed]

Szmolyan P, Wechselberger M (2001) Canards in 3 J Diff Eqn 177:419-453

Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635-50 [Journal] [PubMed]

Troy WC (1978) The bifurcation of periodic solutions in the Hodgkin-Huxley equations. Quart Appl Math 36:73-83

Wang XJ, Rinzel J (1995) Oscillatory and bursting properties of neurons The Handbook Of Brain Theory And Neural Networks, Arbib MA, ed. pp.686

Wechselberger M (2005) Existence and bifurcation of canards in 3 in the case of a folded node SIAM J Appl Dynam Sys 4:101-139

(61 refs)