Citation Relationships



Nicola SM, Surmeier J, Malenka RC (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23:185-215 [PubMed]

References and models cited by this paper

References and models that cite this paper

Brunel N, Wang XJ (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci 11:63-85 [PubMed]

Damodaran S, Cressman JR, Jedrzejewski-Szmek Z, Blackwell KT (2015) Desynchronization of fast-spiking interneurons reduces ß-band oscillations and imbalance in firing in the dopamine-depleted striatum. J Neurosci 35:1149-59 [Journal] [PubMed]

   Striatal NN model of MSNs and FSIs investigated effects of dopamine depletion (Damodaran et al 2015) [Model]

Damodaran S, Evans RC, Blackwell KT (2014) Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. J Neurophysiol 111:836-48 [Journal] [PubMed]

   Synchronicity of fast-spiking interneurons balances medium-spiny neurons (Damodaran et al. 2014) [Model]

Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci 17:51-72 [Journal] [PubMed]

   Dynamic dopamine modulation in the basal ganglia: Learning in Parkinson (Frank et al 2004,2005) [Model]

Gruber AJ, Dayan P, Gutkin BS, Solla SA (2006) Dopamine modulation in the basal ganglia locks the gate to working memory. J Comput Neurosci 20:153-66 [Journal] [PubMed]

Gruber AJ, Solla SA, Surmeier DJ, Houk JC (2003) Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. J Neurophysiol 90:1095-114 [Journal] [PubMed]

   Spiny neuron model with dopamine-induced bistability (Gruber et al 2003) [Model]

Humphries MD, Stewart RD, Gurney KN (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 26:12921-42 [Journal] [PubMed]

   Spiking neuron model of the basal ganglia (Humphries et al 2006) [Model]

Kotaleski JH, Plenz D, Blackwell KT (2006) Using potassium currents to solve signal-to-noise problems in inhibitory feedforward networks of the striatum. J Neurophysiol 95:331-41 [Journal] [PubMed]

   FS Striatal interneuron: K currents solve signal-to-noise problems (Kotaleski et al 2006) [Model]

Kumaravelu K, Brocker DT, Grill WM (2016) A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease. J Comput Neurosci 40:207-29 [Journal] [PubMed]

   Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016) [Model]

Nakano T, Yoshimoto J, Doya K (2013) A model-based prediction of the calcium responses in the striatal synaptic spines depending on the timing of cortical and dopaminergic inputs and post-synaptic spikes. Front Comput Neurosci 7:119 [Journal] [PubMed]

   Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013) [Model]

O'Reilly RC, Frank MJ (2005) Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia Neural Comput 18:283-328

O'Reilly RC, Frank MJ (2006) Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput 18:283-328 [Journal] [PubMed]

Steephen JE, Manchanda R (2009) Differences in biophysical properties of nucleus accumbens medium spiny neurons emerging from inactivation of inward rectifying potassium currents. J Comput Neurosci 27:453-70 [Journal] [PubMed]

   Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009) [Model]

Ursino M, Baston C (2018) Aberrant learning in Parkinson's disease: A neurocomputational study on bradykinesia. Eur J Neurosci 47:1563-1582 [Journal] [PubMed]

   A basal ganglia model of aberrant learning (Ursino et al. 2018) [Model]

Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Benoit-Marand M, O'Donnell P, Finkel LH (2005) NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. J Neurosci 25:9080-95 [Journal] [PubMed]

   Afferent Integration in the NAcb MSP Cell (Wolf et al. 2005) [Model]

Wörgötter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17:245-319 [Journal] [PubMed]

(16 refs)