Citation Relationships



Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15:1063-70 [PubMed]

   Artificial neuron model (Izhikevich 2003, 2004, 2007)

References and models cited by this paper

References and models that cite this paper

Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99-104 [PubMed]

Ermentrout B (1996) Type I membranes, phase resetting curves, and synchrony. Neural Comput 8:979-1001 [PubMed]

Ermentrout GB, Kopell N (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. Siam J Appl Math 46:233-253

Fitzhugh R (1961) Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys J 1:445-66 [PubMed]

Gerstner W, Kistler WM (2002) Spiking neuron models

Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402:75-9 [Journal] [PubMed]

Gray CM, McCormick DA (1996) Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science 274:109-13 [PubMed]

Hodgkin AL (1948) The local electric changes associated with repetitive action in a non-medullated axon. J Physiol 107:165-81 [PubMed]

HODGKIN AL, HUXLEY AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-44 [Journal] [PubMed]

   Squid axon (Hodgkin, Huxley 1952) (LabAXON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (NEURON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SNNAP) [Model]
   Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other) [Model]

Hoppensteadt FC, Izhikevich EM (1997) Weakly Connected Neural Networks :90

Izhikevich EM (1999) Class 1 neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse-coupled models. IEEE Trans Neural Netw 10:499-507 [Journal] [PubMed]

Izhikevich EM (2000) Neural excitability, spiking and bursting Int J Bifurcat Chaos Appl Sci Eng 10:1171-1266

Izhikevich EM (2001) Resonate-and-fire neurons. Neural Netw 14:883-94 [PubMed]

Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14:1569-72 [Journal] [PubMed]

   Artificial neuron model (Izhikevich 2003, 2004, 2007) [Model]

Izhikevich EM (2007) Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting [Journal]

   Artificial neuron model (Izhikevich 2003, 2004, 2007) [Model]

Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci 26:161-7 [Journal] [PubMed]

Izhikevich EM, Gally JA, Edelman GM (2004) Spike-timing dynamics of neuronal groups. Cereb Cortex 14:933-44 [Journal] [PubMed]

Latham PE, Richmond BJ, Nelson PG, Nirenberg S (2000) Intrinsic dynamics in neuronal networks. I. Theory. J Neurophysiol 83:808-27 [Journal] [PubMed]

Lisman JE (1997) Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci 20:38-43 [Journal] [PubMed]

Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35:193-213 [Journal] [PubMed]

   Morris-Lecar model of the barnacle giant muscle fiber (Morris, Lecar 1981) [Model]

Rinzel J, Ermentrout GB (1989) Analysis of neuronal excitability and oscillations Methods In Neuronal Modeling: From Synapses To Networks, Koch C:Segev I, ed. pp.135

Rose RM, Hindmarsh JL (1989) The assembly of ionic currents in a thalamic neuron. I. The three-dimensional model. Proc R Soc Lond B Biol Sci 237:267-88 [Journal] [PubMed]

Smith GD, Cox CL, Sherman SM, Rinzel J (2000) Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. J Neurophysiol 83:588-610 [Journal] [PubMed]

Wilson HR (1999) Simplified dynamics of human and mammalian neocortical neurons. J Theor Biol 200:375-88 [Journal] [PubMed]

Badel L, Lefort S, Brette R, Petersen CC, Gerstner W, Richardson MJ (2008) Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J Neurophysiol 99:656-66 [Journal] [PubMed]

Baladron J, Nambu A, Hamker FH (2017) The subthalamic nucleus-external globus pallidus loop biases exploratory decisions towards known alternatives: a neuro-computational study. Eur J Neurosci [Journal] [PubMed]

Destexhe A (2009) Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. J Comput Neurosci 27:493-506 [Journal] [PubMed]

   Asynchronous irregular and up/down states in excitatory and inhibitory NNs (Destexhe 2009) [Model]

Hendrickson EB, Edgerton JR, Jaeger D (2011) The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. J Comput Neurosci 30:301-21 [Journal] [PubMed]

   Comparison of full and reduced globus pallidus models (Hendrickson 2010) [Model]

Horcholle-Bossavit G, Quenet B (2009) Neural model of frog ventilatory rhythmogenesis. Biosystems 97:35-43 [Journal] [PubMed]

   Neural model of frog ventilatory rhythmogenesis (Horcholle-Bossavit and Quenet 2009) [Model]

Humphries MD, Gurney K (2007) Solution methods for a new class of simple model neurons. Neural Comput 19:3216-25 [Journal] [PubMed]

Humphries MD, Lepora N, Wood R, Gurney K (2009) Capturing dopaminergic modulation and bimodal membrane behaviour of striatal medium spiny neurons in accurate, reduced models. Front Comput Neurosci 3:26 [Journal] [PubMed]

   Dopamine-modulated medium spiny neuron, reduced model (Humphries et al. 2009) [Model]

Izhikevich EM (2006) Polychronization: computation with spikes. Neural Comput 18:245-82 [Journal] [PubMed]

   Polychronization: Computation With Spikes (Izhikevich 2005) [Model]

Jolivet R, Gerstner W (2004) Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival. J Physiol Paris 98:442-51 [Journal] [PubMed]

Jolivet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, Gerstner W (2008) A benchmark test for a quantitative assessment of simple neuron models. J Neurosci Methods 169:417-24 [Journal] [PubMed]

   Spike Response Model simulator (Jolivet et al. 2004, 2006, 2008) [Model]

Jolivet R, Rauch A, Lüscher HR, Gerstner W (2006) Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comput Neurosci 21:35-49 [Journal] [PubMed]

   Spike Response Model simulator (Jolivet et al. 2004, 2006, 2008) [Model]

Kobayashi R, Tsubo Y, Shinomoto S (2009) Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front Comput Neurosci 3:9 [Journal] [PubMed]

   Multi-timescale adaptive threshold model (Kobayashi et al 2009) (NEURON) [Model]
   Multi-timescale adaptive threshold model (Kobayashi et al 2009) [Model]

Komarov M, Krishnan G, Chauvette S, Rulkov N, Timofeev I, Bazhenov M (2018) New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics. J Comput Neurosci 44:1-24 [Journal] [PubMed]

Lundqvist M, Rehn M, Djurfeldt M, Lansner A (2006) Attractor dynamics in a modular network model of neocortex. Network 17:253-76 [Journal] [PubMed]

Ly C, Tranchina D (2007) Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling. Neural Comput 19:2032-92 [Journal] [PubMed]

Matsubara T, Torikai H (2016) An Asynchronous Recurrent Network of Cellular Automaton-Based Neurons and Its Reproduction of Spiking Neural Network Activities. IEEE Trans Neural Netw Learn Syst 27:836-52 [Journal] [PubMed]

Mensi S, Naud R, Pozzorini C, Avermann M, Petersen CC, Gerstner W (2012) Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. J Neurophysiol 107:1756-75 [Journal] [PubMed]

   Extraction and classification of three cortical neuron types (Mensi et al. 2012) [Model]

Mondal A, Upadhyay RK (2018) Diverse neuronal responses of a fractional-order Izhikevich model: journey from chattering to fast spiking Nonlinear Dynamics 91:1275-1288 [Journal]

Muresan RC, Savin C (2007) Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits. J Neurophysiol 97:1911-30 [Journal] [PubMed]

Naundorf B, Geisel T, and Wolf F (2005) Action Potential Onset Dynamics and the Response Speed of Neuronal Populations J Comp Neurosci 18:297-309 [Journal]

Pospischil M, Toledo-Rodriguez M, Monier C, Piwkowska Z, Bal T, Frégnac Y, Markram H, Destexhe A (2008) Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biol Cybern 99:427-41 [Journal] [PubMed]

   Hodgkin-Huxley models of different classes of cortical neurons (Pospischil et al. 2008) [Model]

Richert M, Nageswaran JM, Dutt N, Krichmar JL (2011) An efficient simulation environment for modeling large-scale cortical processing. Front Neuroinform 5:19 [Journal] [PubMed]

   Efficient simulation environment for modeling large-scale cortical processing (Richert et al. 2011) [Model]

Rulkov NF, Timofeev I, Bazhenov M (2004) Oscillations in large-scale cortical networks: map-based model. J Comput Neurosci 17:203-23 [Journal] [PubMed]

   Large cortex model with map-based neurons (Rulkov et al 2004) [Model]

Sadeh S, Clopath C, Rotter S (2015) Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity. PLoS Comput Biol 11:e1004307 [Journal] [PubMed]

   Functional balanced networks with synaptic plasticity (Sadeh et al, 2015) [Model]

Schmerl BA, McDonnell MD (2013) Channel noise induced stochastic facilitation in an auditory brainstem neuron model Physical Review E 88:052722 [Journal]

   Simulating ion channel noise in an auditory brainstem neuron model (Schmerl & McDonnell 2013) [Model]

Sen-Bhattacharya B, Serrano-Gotarredona T, Balassa L, Bhattacharya A, Stokes AB, Rowley A, Sugiarto I, Furber S (2017) A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine. Front Neurosci 11:454 [Journal] [PubMed]

   A spiking neural network model of the Lateral Geniculate Nucleus (Sen-Bhattacharya et al 2017) [Model]

Sterratt D, Graham B, Gillies A, Willshaw D (2011) Principles of Computational Modelling in Neuroscience, Cambridge University Press :1-401 [Journal]

   Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011) [Model]

Stewart RD, Bair W (2009) Spiking neural network simulation: numerical integration with the Parker-Sochacki method. J Comput Neurosci [Journal] [PubMed]

   Numerical Integration of Izhikevich and HH model neurons (Stewart and Bair 2009) [Model]

Swiercz W, Cios KJ, Staley K, Kurgan L, Accurso F, Sagel S (2006) A new synaptic plasticity rule for networks of spiking neurons. IEEE Trans Neural Netw 17:94-105 [Journal] [PubMed]

Teka W, Marinov TM, Santamaria F (2014) Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. PLoS Comput Biol 10:e1003526 [Journal] [PubMed]

   Fractional leaky integrate-and-fire model (Teka et al. 2014) [Model]

Teramae JN, Fukai T (2007) Local cortical circuit model inferred from power-law distributed neuronal avalanches. J Comput Neurosci 22:301-12 [Journal] [PubMed]

Tikidji-Hamburyan RA, Martínez JJ, White JA, Canavier CC (2015) Resonant Interneurons Can Increase Robustness of Gamma Oscillations. J Neurosci 35:15682-95 [Journal] [PubMed]

   PIR gamma oscillations in network of resonators (Tikidji-Hamburyan et al. 2015) [Model]

Touboul J, Brette R (2008) Dynamics and bifurcations of the adaptive exponential integrate-and-fire model. Biol Cybern 99:319-34 [Journal] [PubMed]

   Brette-Gerstner model (Touboul and Brette 2008) [Model]

Valero MR, Hale N, Tang J, Jiang L (2017) A comprehensive mechanotransduction model for tactile feedback based on multi-axial stresses at the fingertip-contact interface 2017 IEEE World Haptics Conference (WHC) :43-47 [Journal]

Versace M, Ames H, Léveillé J, Fortenberry B, Gorchetchnikov A (2008) KInNeSS: a modular framework for computational neuroscience. Neuroinformatics 6:291-309 [Journal] [PubMed]

   KInNeSS : a modular framework for computational neuroscience (Versace et al. 2008) [Model]

(59 refs)