Citation Relationships



De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. J Neurophysiol 71:401-19 [PubMed]

   Cerebellar purkinje cell (De Schutter and Bower 1994)

References and models cited by this paper

References and models that cite this paper

Bernander O, Koch C, Douglas RJ (1994) Amplification and linearization of distal synaptic input to cortical pyramidal cells. J Neurophysiol 72:2743-53 [Journal] [PubMed]

Chono K, Takagi H, Koyama S, Suzuki H, Ito E (2003) A cell model study of calcium influx mechanism regulated by calcium-dependent potassium channels in Purkinje cell dendrites. J Neurosci Methods 129:115-27 [PubMed]

Couto J, Linaro D, De Schutter E, Giugliano M (2015) On the firing rate dependency of the phase response curve of rat Purkinje neurons in vitro. PLoS Comput Biol 11:e1004112 [Journal] [PubMed]

   Phase response curves firing rate dependency of rat purkinje neurons in vitro (Couto et al 2015) [Model]

Davison A (2004) Biologically-detailed network modelling (Chapter 10) Computation Neuroscience: A Comprehensive Approach, Feng J, ed. pp.287

De Schutter E (1997) A new functional role for cerebellar long-term depression. Prog Brain Res 114:529-42 [PubMed]

   Cerebellar purkinje cell (De Schutter and Bower 1994) [Model]

De Schutter E (1998) Dendritic voltage and calcium-gated channels amplify the variability of postsynaptic responses in a Purkinje cell model. J Neurophysiol 80:504-19 [Journal] [PubMed]

   Cerebellar purkinje cell (De Schutter and Bower 1994) [Model]

De Schutter E (1999) Using realistic models to study synaptic integration in cerebellar Purkinje cells. Rev Neurosci 10:233-45 [PubMed]

De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J Neurophysiol 71:375-400 [Journal] [PubMed]

   Cerebellar purkinje cell (De Schutter and Bower 1994) [Model]

De Schutter E, Smolen P (1998) Calcium dynamics in large neuronal models Methods In Neuronal Modeling: From Ions To Networks, Koch C:Segev I, ed. pp.211

Destexhe A, Contreras D, Steriade M, Sejnowski TJ, Huguenard JR (1996) In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J Neurosci 16:169-85 [Journal] [PubMed]

   Thalamic reticular neurons: the role of Ca currents (Destexhe et al 1996) [Model]

Fernandez FR, Engbers JD, Turner RW (2007) Firing dynamics of cerebellar purkinje cells. J Neurophysiol 98:278-94 [Journal] [PubMed]

Forrest MD (2015) Simulation of alcohol action upon a detailed Purkinje neuron model and a simpler surrogate model that runs >400 times faster. BMC Neurosci 16:27 [Journal] [PubMed]

   Alcohol action in a detailed Purkinje neuron model and an efficient simplified model (Forrest 2015) [Model]

Friedrich P, Vella M, Gulyás AI, Freund TF, Káli S (2014) A flexible, interactive software tool for fitting the parameters of neuronal models. Front Neuroinform 8:63 [Journal] [PubMed]

   Software (called Optimizer) for fitting neuronal models (Friedrich et al. 2014) [Model]

Haag J, Theunissen F, Borst A (1997) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: II. Active membrane properties. J Comput Neurosci 4:349-69 [PubMed]

   Fly lobular plate VS cell (Borst and Haag 1996, et al. 1997, et al. 1999) [Model]

Jaeger D (2003) No Parallel Fiber Volleys in the Cerebellar Cortex: Evidence from Cross-Correlation Analysis between Purkinje Cells in a Computer Model and in Recordings from Anesthetized Rats Journal of Computational Neuroscience 14:311-327 [Journal] [PubMed]

Kozloski J, Wagner J (2011) An Ultrascalable Solution to Large-scale Neural Tissue Simulation. Front Neuroinform 5:15 [Journal] [PubMed]

Manninen T, Hituri K, Kotaleski JH, Blackwell KT, Linne ML (2010) Postsynaptic signal transduction models for long-term potentiation and depression. Front Comput Neurosci 4:152 [Journal] [PubMed]

Marasco A, Limongiello A, Migliore M (2013) Using Strahler's analysis to reduce up to 200-fold the run time of realistic neuron models. Sci Rep 3:2934 [Journal] [PubMed]

   Using Strahler`s analysis to reduce realistic models (Marasco et al, 2013) [Model]

Masoli S, D'Angelo E (2017) Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Front Cell Neurosci 11:278 [Journal] [PubMed]

Miyasho T, Takagi H, Suzuki H, Watanabe S, Inoue M, Kudo Y, Miyakawa H (2001) Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study. Brain Res 891:106-15 [PubMed]

   Cerebellar purkinje cell: K and Ca channels regulate APs (Miyasho et al 2001) [Model]

Roberts PD (2007) Stability of complex spike timing-dependent plasticity in cerebellar learning. J Comput Neurosci 22:283-96 [Journal] [PubMed]

   Stability of complex spike timing-dependent plasticity in cerebellar learning (Roberts 2007) [Model]

Santamaria F, Jaeger D, De Schutter E, Bower JM (2002) Modulatory effects of parallel fiber and molecular layer interneuron synaptic activity on purkinje cell responses to ascending segment input: a modeling study. J Comput Neurosci 13:217-35 [PubMed]

Santamaria F, Tripp PG, Bower JM (2007) Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex. J Neurophysiol 97:248-63 [Journal] [PubMed]

Solinas S, Forti L, Cesana E, Mapelli J, De Schutter E, D'Angelo E (2007) Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo. Front Cell Neurosci 1:4 [Journal] [PubMed]

   Cerebellar Golgi cell (Solinas et al. 2007a, 2007b) [Model]

Solinas S, Forti L, Cesana E, Mapelli J, De Schutter E, D'Angelo E (2007) Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Front Cell Neurosci 1:2 [Journal] [PubMed]

   Cerebellar Golgi cell (Solinas et al. 2007a, 2007b) [Model]

Staub C, De Schutter E, Knöpfel T (1994) Voltage-imaging and simulation of effects of voltage- and agonist-activated conductances on soma-dendritic voltage coupling in cerebellar Purkinje cells. J Comput Neurosci 1:301-11 [PubMed]

   Cerebellar purkinje cell (De Schutter and Bower 1994) [Model]

Sterratt D, Graham B, Gillies A, Willshaw D (2011) Principles of Computational Modelling in Neuroscience, Cambridge University Press :1-401 [Journal]

   Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011) [Model]

Steuber V, Schultheiss NW, Silver RA, De Schutter E, Jaeger D (2011) Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells. J Comput Neurosci 30:633-58 [Journal] [PubMed]

   Cerebellar Nucleus Neuron (Steuber, Schultheiss, Silver, De Schutter & Jaeger, 2010) [Model]
   Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017) [Model]

Steuber V, Willshaw D (2004) A biophysical model of synaptic delay learning and temporal pattern recognition in a cerebellar Purkinje cell. J Comput Neurosci 17:149-64 [Journal] [PubMed]

Traub RD, Middleton SJ, Knopfel T, Whittington MA (2008) Model of very fast (greater than 75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells. Eur J Neurosci 28:1603-16 [Journal]

   Axonal gap junctions produce fast oscillations in cerebellar Purkinje cells (Traub et al. 2008) [Model]

Winslow JL, Jou SF, Wang S, Wojtowicz JM (1999) Signals in stochastically generated neurons. J Comput Neurosci 6:5-26 [PubMed]

Zang Y, Dieudonné S, De Schutter E (2018) Voltage- and Branch-Specific Climbing Fiber Responses in Purkinje Cells Cell Reports 24(6):1536-1549 [Journal] [PubMed]

   Voltage- and Branch-specific Climbing Fiber Responses in Purkinje Cells (Zang et al 2018) [Model]

(32 refs)