Citation Relationships



Washizawa Y, Yamashita Y (2006) Kernel projection classifiers with suppressing features of other classes. Neural Comput 18:1932-50

References and models cited by this paper

References and models that cite this paper

Bach FR, Jordan MI (2002) Kernel independent component analysis J Mach Learn Res 3:1-48

Cortes C, Vapnik V (1995) Support-vector networks Mach Learn 20:273-297

Groetsch CW (1993) Inverse problems in the mathematical sciences

Israel AB, Greville TNE (1974) Generalized inverse: Theory and applications

Luenberger DG (1969) Optimization by vector space methods

Maeda E, Murase H (1999) Multi-category classification by kernel based nonlinear subspace method IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2:1025-1028

Mika S, Ratsch G, Weston J, Scholkopf B, Muller KR (1999) Fisher discriminant analysis with kernels Neural networks for signal processing IX, Hu YH:Larson J:Wilson E:Douglas S, ed. pp.41

Mika S, Ratsch G, Weston J, Scholkopf B, Smola A, Muller K (2000) Invariant feature extraction and classification in kernel spaces Advances in neural information processing systems, Solla SA:Leen TK:Muller KR, ed. pp.526

Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12:181-201 [Journal] [PubMed]

Murata H, Onoda T (2001) Applying kernel based subspace classification to a non-intrusive monitoring for household electoric appliances International Conference on Artificial Neural Networks (ICANN), Dorffiner G:Bischof H:Hornik K, ed. pp.692

Oja E (1983) Subspace methods of pattern recognition

Ratsch G (2001) Robust boosting via convex optimization Unpublished doctoral dissertation

Ratsch G, Onoda T, Muller KR (2001) Soft margins for AdaBoost Mach Learn 42:287-320

Rohde CA (1965) Generalized inverses of partitioned matrices J Soc Indust Appl Math 13:1033-1035

Scholkopf B, Bartlett P, Smola B, Williamson R (1999) Shrinking the tube: A new support vector regression algorithm Advances in neural information processing systems, Kearns MS:Solla SA:Cohn D, ed.

Schölkopf B, Mika S, Burges CC, Knirsch P, Müller KR, Rätsch G, Smola AJ (1999) Input space versus feature space in kernel-based methods. IEEE Trans Neural Netw 10:1000-17 [Journal] [PubMed]

Scholkopf B, Smola A, Muller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem Neural Comput 10:1299-1319

Tikhonov AN, Arsenin VY (1977) Solution of ill-posed problems

Tsuda K (1999) Subspace classifier in the Hilbert space Pattern Recognition Letters 20:513-519

Vapnik V (1998) Statistical Learning Theory

Washizawa Y, Yamashita Y (2004) Kernel sample space projection classifier for pattern recognition 17th International Conference On Pattern Recognition 2:435-438

Watanabe S, Pakvasa N (1973) Subspace method in pattern recognition Proc. 1st Int. J. Conf on Pattern Recognition :25-32

Yamashita Y, Ogawa H (1996) Relative Karhunen-Loeve transform IEEE Transactions On Signal Processing 44:1031-1033

(23 refs)