Citation Relationships



Song S, Abbott LF (2001) Cortical development and remapping through spike timing-dependent plasticity. Neuron 32:339-50 [PubMed]

References and models cited by this paper

References and models that cite this paper

Antunes G, da Silva SFF, de Souza FMS (2017) Mirror Neurons Modeled Through Spike-Timing-Dependent Plasticity are Affected by Channelopathies Associated with Autism Spectrum Disorder. Int J Neural Syst :1750058 [Journal] [PubMed]

   Mirror Neuron (Antunes et al 2017) [Model]

Brette R (2004) Dynamics of one-dimensional spiking neuron models. J Math Biol 48:38-56 [Journal] [PubMed]

   Phase locking in leaky integrate-and-fire model (Brette 2004) [Model]

Brette R (2006) Exact simulation of integrate-and-fire models with synaptic conductances. Neural Comput 18:2004-27 [PubMed]

Burkitt AN, Meffin H, Grayden DB (2004) Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural Comput 16:885-940 [PubMed]

Clopath C, Busing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13:344-52 [Journal] [PubMed]

   Voltage-based STDP synapse (Clopath et al. 2010) [Model]

Davison AP, Fregnac Y (2006) Learning Cross-Modal Spatial Transformations through Spike Timing-Dependent Plasticity J Neurosci 26:5604-5615 [Journal] [PubMed]

   Learning spatial transformations through STDP (Davison, Fr├ęgnac 2006) [Model]

Gilson M, Masquelier T, Hugues E (2011) STDP Allows Fast Rate-Modulated Coding with Poisson-Like Spike Trains PLoS Comput Biol 7(10):e1002231 [Journal] [PubMed]

   STDP allows fast rate-modulated coding with Poisson-like spike trains (Gilson et al. 2011) [Model]

Hosaka R, Araki O, Ikeguchi T (2008) STDP Provides the Substrate for Igniting Synfire Chains by Spatiotemporal Input Patterns. Neural Comput 20:415-35 [PubMed]

Hoshino O (2004) Neuronal bases of perceptual learning revealed by a synaptic balance scheme. Neural Comput 16:563-94 [PubMed]

Masuda N, Aihara K (2004) Self-organizing dual coding based on spike-time-dependent plasticity. Neural Comput 16:627-63 [PubMed]

Masuda N, Kori H (2007) Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. J Comput Neurosci 22:327-45 [Journal] [PubMed]

Muller E, Buesing L, Schemmel J, Meier K (2007) Spike-frequency adapting neural ensembles: beyond mean adaptation and renewal theories. Neural Comput 19:2958-3010 [PubMed]

Rudolph M, Destexhe A (2006) Analytical Integrate-and-Fire Neuron Models with Conductance-Based Dynamics for Event-Driven Simulation Strategies. Neural Comput 18:2146-210 [PubMed]

Rudolph M, Destexhe A (2006) Event-based simulation strategy for conductance-based synaptic interactions and plasticity Neurocomputing 69:1130-1133

Rumsey CC, Abbott LF (2004) Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity. J Neurophysiol 91:2273-80 [Journal] [PubMed]

Sadeh S, Clopath C, Rotter S (2015) Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity. PLoS Comput Biol 11:e1004307 [Journal] [PubMed]

   Functional balanced networks with synaptic plasticity (Sadeh et al, 2015) [Model]

Swiercz W, Cios KJ, Staley K, Kurgan L, Accurso F, Sagel S (2006) A new synaptic plasticity rule for networks of spiking neurons. IEEE Trans Neural Netw 17:94-105 [PubMed]

(17 refs)