Citation Relationships



Zucker RS (1999) Calcium- and activity-dependent synaptic plasticity. Curr Opin Neurobiol 9:305-13 [PubMed]

References and models cited by this paper

References and models that cite this paper

Badoual M, Zou Q, Davison AP, Rudolph M, Bal T, Frégnac Y, Destexhe A (2006) Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. Int J Neural Syst 16:79-97 [Journal] [PubMed]

   Biophysical and phenomenological models of spike-timing dependent plasticity (Badoual et al. 2006) [Model]

Burkitt AN, Meffin H, Grayden DB (2004) Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural Comput 16:885-940 [Journal] [PubMed]

Cornelisse LN, van Elburg RA, Meredith RM, Yuste R, Mansvelder HD (2007) High speed two-photon imaging of calcium dynamics in dendritic spines: consequences for spine calcium kinetics and buffer capacity. PLoS One 2:e1073 [Journal] [PubMed]

   Determinants of fast calcium dynamics in dendritic spines and dendrites (Cornelisse et al. 2007) [Model]

Graupner M, Brunel N (2007) STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS Comput Biol 3:e221 [Journal] [PubMed]

   CaMKII system exhibiting bistability with respect to calcium (Graupner and Brunel 2007) [Model]

Luthman J, Hoebeek FE, Maex R, Davey N, Adams R, De Zeeuw CI, Steuber V (2011) STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron. Cerebellum 10:667-82 [Journal] [PubMed]

   Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017) [Model]
   STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011) [Model]

Matveev V, Bertram R, Sherman A (2006) Residual bound Ca2+ can account for the effects of Ca2+ buffers on synaptic facilitation. J Neurophysiol 96:3389-97 [Journal] [PubMed]

   Facilitation model based on bound Ca2+ (Matveev et al. 2006) [Model]

Matveev V, Zucker RS, Sherman A (2004) Facilitation through buffer saturation: constraints on endogenous buffering properties. Biophys J 86:2691-709 [Journal] [PubMed]

   Facilitation through buffer saturation (Matveev et al. 2004) [Model]

Mukunda CL, Narayanan R (2017) Degeneracy in the regulation of short-term plasticity and synaptic filtering by presynaptic mechanisms. J Physiol 595:2611-2637 [Journal] [PubMed]

   Conductance based model for short term plasticity at CA3-CA1 synapses (Mukunda & Narayanan 2017) [Model]

Narayanan R, Johnston D (2010) The h current is a candidate mechanism for regulating the sliding modification threshold in a BCM-like synaptic learning rule. J Neurophysiol 104:1020-33 [Journal] [PubMed]

   BCM-like synaptic plasticity with conductance-based models (Narayanan Johnston, 2010) [Model]

O'Donnell C, Nolan MF, van Rossum MC (2011) Dendritic spine dynamics regulate the long-term stability of synaptic plasticity. J Neurosci 31:16142-56 [Journal] [PubMed]

   CA1 pyramidal neuron dendritic spine with plasticity (O`Donnell et al. 2011) [Model]

Sun HY, Lyons SA, Dobrunz LE (2005) Mechanisms of target-cell specific short-term plasticity at Schaffer collateral synapses onto interneurones versus pyramidal cells in juvenile rats. J Physiol 568:815-40 [Journal] [PubMed]

Wörgötter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17:245-319 [Journal] [PubMed]

Zhou YD, Acker CD, Netoff TI, Sen K, White JA (2005) Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression. Proc Natl Acad Sci U S A 102:19121-5 [Journal] [PubMed]

(13 refs)