Citation Relationships



Paninski L (2005) Asymptotic theory of information-theoretic experimental design. Neural Comput 17:1480-507 [PubMed]

References and models cited by this paper

References and models that cite this paper

Axelrod S, Fine S, Gilad-bachrach R, Mendelson S, Tishby N (2001) The information of observations and application for active learning with uncertainty Tech Rep (Available online: citeseer.nj.nec.com-axelrod01information.html)

Barron A, Schervish M, Wasserman L (1999) The consistency of posterior distributions in nonparametric problems Ann Stat 27:536-561

Bell R, Cover T (1980) Competitive optimality of logarithmic investment Math Operat Res 5:161-166

Berger J, Bernardo J, Mendoza M (1989) On priors that maximize expected information Recent developments of statistics and its applications, Klein J:Lee HJ, ed. pp.1

Chaloner K, Verdinelli I (1995) Bayesian experimental design: A review Stat Sci 10:273-304

Chichilnisky EJ (2001) A simple white noise analysis of neuronal light responses. Network 12:199-213 [PubMed]

Clarke B, Barron A (1994) Jeffreys prior is asymptotically least favorable under entropy risk J Stat Plan Inf 41:37-60

Clarke BS, Barron AR (1990) Information theoretic asymptotics of Bayes methods IEEE Transactions On Information Theory 36:453-471

Clyde M, Chaloner K (1996) The equivalence of constrained and weighted designs in multiple objective design problems J Am Stat Assoc 91:1236-1244

Cohn D, Ghahramani Z, Jordan M (1996) Active learning with statistical models J Art Intell Res 4:129-145

Cover TM, Thomas JA (1991) Elements of Information Theory

Dayan P, Abbott L (2001) Neural encoding: Firing rates and spike statistics Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems

Deignan P, Meckl P, Franchek M, Abraham J, Jaliwala S (2000) Using mutual information to pre-process input data for a virtual sensor Paper presented at the American Control Conference 2000, Chicago

Dembo A, Zeitouni O (1993) Large Deviations Techniques and Applications

Denzler J, Brown C (2000) Optimal selection of camera parameters for state estimation of static systems: An information theoretic approach Tech Rep 732

Fedorov V (1972) Theory of optimal experiments

Foldiak P (2001) Stimulus optimisation in primary visual cortex Neurocomputing 38:1217-1222

Freund Y, Seung HS, Shamir E, Tishby N (1997) Selective sampling using the query by committee algorithm Mach Learn 28:133-168

Lee T, Yu S (1998) An information-theoretic framework for understanding saccadic behaviors Advances in neural information processing systems, Solla SA:Leen TK:Muller KR, ed.

Lewis A (1996) Convex analysis on the Hermitian matrices SIAM Journal On Optimization 6:164-177

Lindley D (1956) On a measure of information provided by an experiment Ann Math Stat 29:986-1005

Luttrell S (1985) The use of transinformation in the design of data sampling schemes for inverse problems Inverse Problems 1:199-218

Mackay D (1992) Information-based objective functions for active data selection Neural Comput 4:589-603

Mascaro M, Bradley D (2002) Optimized neuronal tuning algorithm for multi- channel recording Unpublished abstract (Available online: http:--www.compscipreprints.com-)

Milman V, Schechtman G (1986) Asymptotic theory of finite dimensional normed spaces

Nelson J, Movellan J (2000) Active inference in concept learning Advances in neural information processing, Leen TK:Dietterich TG:Tresp V, ed.

Parmigiani G (1998) Designing observation times for interval censored data Sankhya A 60:446-458

Parmigiani G, Berry D (1994) Applications of Lindley information measure to the design of clinical experiments Aspects of uncertainty: A tribute to D. V. Lindley, Smith AFM:Freeman P, ed. pp.333

Pelli D (1987) The ideal psychometric procedure Inv Op Vis Sci 28:366

Rudin W (1973) Functional analysis

Sahani M (1997) nteractively exploring a neural code by active learning Poster session presented at NIC97 meeting, Snowbird, Utah (Available online: http:--www.gatsby.ucl.ac.uk-maneesh-conferences-nic97-poster-home.html)

Schervish MJ (1995) Theory of Statistics

Schwartz L (1967) On Bayes procedures Z Wahrsch Verw Gabiete 4:10-26

Simoncelli EP, Paninski L, Pillow J, Schwartz O (2004) Characterization of neural responses with stochastic stimuli The New Cognitive Neurosciences (3rd ed), Gazzaniga M, ed.

Sollich P (1996) Learning from minimum entropy queries in a large committee machine. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 53:R2060-R2063 [PubMed]

Talagrand M (1995) Concentration of measure and isoperimetric inequalities in product spaces Publ Math IHES 81:73-205

van_derVaart A (1998) Asymptotic statistics

Huys QJ, Ahrens MB, Paninski L (2006) Efficient estimation of detailed single-neuron models. J Neurophysiol 96:872-90 [Journal] [PubMed]

   Efficient estimation of detailed single-neuron models (Huys et al. 2006) [Model]

(38 refs)