References and models cited by this paper | References and models that cite this paper | |
Baker A (2002) Matrix groups: An introduction to Lie group theory Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for support vector machines Machine Learning 46:131-159 Chung KM, Kao WC, Sun CL, Wang LL, Lin CJ (2003) Radius margin bounds for support vector machines with the RBF kernel. Neural Comput 15:2643-81 [Journal] [PubMed] Friedrichs F, Igel C (2005) Evolutionary tuning of multiple SVM parameters Neurocomputing 64:107-117 Galleske I, Castellanos J (2002) Optimization of the kernel functions in a probabilistic neural network analyzing the local pattern distribution. Neural Comput 14:1183-94 Gold C, Sollich P (2003) Model selection for support vector machine classification Neurocomputing 55:221-249 Jaakkola T, Diekhans M, Haussler D (1999) Using the Fisher kernel method to detect remote protein homologies. Proc Int Conf Intell Syst Mol Biol :149-58 [PubMed] Keerthi SS (2002) Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Trans Neural Netw 13:1225-9 [Journal] [PubMed] Scholkopf B, Burges CJC, Vapnik V (1995) Extracting support data for a given task Proceedings of the First International Conference on Knowledge Discovery and Data Mining , Fayyad UM:Uthurusamy R, ed. pp.252 Vapnik V (1998) Statistical Learning Theory | Glasmachers T, Igel C (2008) Second-order SMO improves SVM online and active learning. Neural Comput 20:374-82 [Journal] [PubMed] |