Citation Relationships

Glasmachers T, Igel C (2005) Gradient-based adaptation of general gaussian kernels. Neural Comput 17:2099-105 [PubMed]

References and models cited by this paper

References and models that cite this paper

Baker A (2002) Matrix groups: An introduction to Lie group theory

Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for support vector machines Machine Learning 46:131-159

Chung KM, Kao WC, Sun CL, Wang LL, Lin CJ (2003) Radius margin bounds for support vector machines with the RBF kernel. Neural Comput 15:2643-81 [Journal] [PubMed]

Friedrichs F, Igel C (2005) Evolutionary tuning of multiple SVM parameters Neurocomputing 64:107-117

Galleske I, Castellanos J (2002) Optimization of the kernel functions in a probabilistic neural network analyzing the local pattern distribution. Neural Comput 14:1183-94

Gold C, Sollich P (2003) Model selection for support vector machine classification Neurocomputing 55:221-249

Jaakkola T, Diekhans M, Haussler D (1999) Using the Fisher kernel method to detect remote protein homologies. Proc Int Conf Intell Syst Mol Biol :149-58 [PubMed]

Keerthi SS (2002) Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Trans Neural Netw 13:1225-9 [Journal] [PubMed]

Scholkopf B, Burges CJC, Vapnik V (1995) Extracting support data for a given task Proceedings of the First International Conference on Knowledge Discovery and Data Mining , Fayyad UM:Uthurusamy R, ed. pp.252

Vapnik V (1998) Statistical Learning Theory

Glasmachers T, Igel C (2008) Second-order SMO improves SVM online and active learning. Neural Comput 20:374-82 [Journal] [PubMed]

(11 refs)