Citation Relationships



Vijayakumar S, D'Souza A, Schaal S (2005) Incremental online learning in high dimensions. Neural Comput 17:2602-34 [PubMed]

References and models cited by this paper

References and models that cite this paper

An CH, Atkeson C, Hollerbach J (1988) Model based control of a robot manipulator

Atkeson C, Moore A, Schaal S (1997) Locally weighted learning Art Intell Rev 11:76-113

Belsley DA, Kuh E, Welsch D (1980) Regression diagnostics

Dsouza A, Vijayakumar S, Schaal S (2001) Are internal models of the entire body learnable? Soc Neurosci Abstr

Everitt BS (1984) An introduction to latent variable models

Fahlman SE, Lebiere C (1990) The cascade-correlation learning architecture Advances in neural information processing systems, Touretzky DS, ed. pp.524

Frank I, Friedman J (1993) A statistical view of some chemometric tools Technometrics 35:109-135

Friedman J, Stuetzle W (1981) Projection pursuit regression J Am Stat Assoc 76:817-823

Gelman AB, Carlin JS, Stern HS, Rubin DB (1995) Bayesian data analysis

Ghahramani Z, Beal M (2000) Variational inference for Bayesian mixtures of factor analysers Advances in neural information processing systems, Solla SA:Leen TK:Muller KR, ed. pp.449

Gibbs M, Mackay DJC (1997) Efficient implementation of gaussian processes Tech Rep

Hastie T, Loader C (1993) Local regression: Automatic kernel carpentry Statistical Science 8:120-1437

Hastie T, Tibshirani R (1990) Generalized additive models

Hettich S, Bay S (1999) The UCI KDD archive

Jordan MI, Jacobs RA (1994) Hierarchical mixtures of experts and the EM algorithm Neural Comput 6:181-214

Ljung L, Soderstrom T (1986) Theory and practice of recursive identification

Myers RH (1990) Classical and modern regression with applications

Nakanishi J, Farrell JA, Schaal S (2004) Composite adaptive control with locally weighted statistical learning IEEE International Conference on Robotics and Automation :2647-2652

Perrone MP, Cooper LN (1993) Neural networks for speech and image processing

Platt J (1991) A resource-allocating network for function interpolation Neural Comput 3:213-225

Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1989) Numerical Recipes

Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323-6 [Journal] [PubMed]

Rubin D, Thayer D (1982) EM algorithms for ML factor analysis Psychometrika 47:69-76

Sanger TD (1989) Optimal unsupervised learning in a single-layer linear feedforward neural networks Neural Networks 2:459-473

Saunders C, Stitson M, Weston J, Bottou L, Schoelkopf B, Smola A (1998) Support vector machine-reference manual Tech. Rep. TR CSD-TR-98-03

Schaal S, Atkeson C (1994) Assessing the quality of learned local models Advances in neural information processing systems, Cowan JD:Tesauro G:Alspetor J, ed. pp.160

Schaal S, Atkeson C (1997) Receptive field weighted regression Tech. Rep. TR-H-209

Schaal S, Atkeson CG (1998) Constructive incremental learning from only local information Neural Comput 10:2047-84 [PubMed]

Schaal S, Vijayakumar S, Atkeson CG (1998) Local dimensionality reduction Advances in neural information processing systems, Jordan MI:Kearns MJ:Solla SA, ed.

Scholkopf B, Smola A, Muller KR (1999) Kernel principal component analysis Advances in kernel methods-Support vector learning, Scholkopf B:Burges C:Smola A, ed.

Scholkopf B, Smola AJ, Williamson RC, Bartlett PL (2000) New support vector algorithms Neural Comput 12:1207-45 [PubMed]

Scott DW (1992) Multivariate density estimation: Theory, practice, and visualization

Smola AJ, Scholkopf B (1998) A tutorial on support vector regression Tech. Rep. No. NC-TR-98-030

Stevens BL, Lewis FL (2003) Aircraft control and simulation

Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319-23 [Journal] [PubMed]

Tipping M, Bishop C (1999) Probabilistic principal component analysis J Roy Stat Soc B 61:611-622

Ueda N, Nakano R, Ghahramani Z, Hinton GE (2000) SMEM algorithm for mixture models. Neural Comput 12:2109-28 [PubMed]

Vijayakumar S, Ogawa H (1999) RKHS based functional analysis for exact incremental learning Neurocomputing 29:85-113

Vijayakumar S, Schaal S (1998) Local adaptive subspace regression Neural Proc Lett 7:139-149

Vlassis N, Motomura Y, Kröse B (2002) Supervised dimension reduction of intrinsically low-dimensional data. Neural Comput 14:191-215 [Journal] [PubMed]

Williams CKI, Rasmussen CE (1996) Gaussian processes for regression Advances in neural processing systems, Touretzky DS:Mozar MC:Hasselmo ME, ed. pp.598

Williams CKI, Seeger M (2001) Using the Nystrom method to speed up kernel machines Advances in neural information processing systems, Leen TK:Dietterich TG:Tresp V, ed. pp.682

Wold H (1975) Perspectives in probability and statistics

Xu L, Jordan M, Hinton G (1995) An alternative model for mixtures of experts Advances in neural information processing systems, Tesauro G:Touretzky D:Leen T, ed. pp.633

Casellato C, Antonietti A, Garrido JA, Carrillo RR, Luque NR, Ros E, Pedrocchi A, D'Angelo E (2014) Adaptive robotic control driven by a versatile spiking cerebellar network. PLoS One 9:e112265 [Journal] [PubMed]

   Adaptive robotic control driven by a versatile spiking cerebellar network (Casellato et al. 2014) [Model]

(45 refs)