Citation Relationships

Tsuda K, Akaho S, Kawanabe M, Müller KR (2004) Asymptotic properties of the Fisher kernel. Neural Comput 16:115-37 [PubMed]

References and models cited by this paper

References and models that cite this paper

Albert A (1972) Regression and the Moore-Penrose pseudoinverse

Amari S, Murata N (1993) Statistical theory of learning curves under entropic loss criterion Neural Comput 5:140-154

Amari S, Nagaoka H (2001) Methods of information geometry

Barndorff-nielsen O, Cox D (1989) Asymptotic techniques for use in statistics

Baum E, Haussler D (1989) What size net gives valid generalization Neural Comput 1:151-160

Campbell S, Meyer C (1979) Generalized inverse of linear transformations

Cox D, Hinkley D (1974) Theoretical statistics

Cristianini N, Shawe-taylor J (2000) An introduction to support vector machines

Devroye L, Gyorfi L, Lugosi G (1996) A probabilistic theory of pattern recognition

Eguchi S, Copas J (2001) Information geometry on discriminant analysis and recent development J Korean Stat Soc 27:101-117

Gelfand I, Fomin S (1963) Calculus of variations

Gotoh O (1982) An improved algorithm for matching biological sequences. J Mol Biol 162:705-8 [PubMed]

Haussler D, Kearns M, Seung H, Tishby N (1996) Rigorous learning curve bounds from statistical mechanics Mach Learn 25:195-236

Jaakkola T, Haussler D (1999) Exploiting generative models in discriminative classifiers Advances in neural information processing systems, Kearns M:Solla S:Cohn D, ed. pp.487

Jaakkola T, Meila M, Jebara T (1999) Maximum entropy discrimination Tech. Rep. No. AITR-1668

Kawanabe M, Amari S (1994) Estimation of network parameters in semiparametric stochastic perceptron Neural Comput 6:1244-1261

Malzahn D, Opper M (2002) A variational approach to learning curves Advances in neural information processing systems, Dietterich TG:Becker S:Ghahramani Z, ed. pp.463

Müller KR, Finke M, Murata N, Schulten K, Amari S (1996) A numerical study on learning curves in stochastic multilayer feedforward networks. Neural Comput 8:1085-106 [PubMed]

Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12:181-201 [Journal] [PubMed]

Scholkopf B, Smola AJ (2001) Learning with kernels: Support vector machines, regularization, optimization, and beyond

Seeger M (2000) Learning with labeled and unlabeled data Tech Rep

Seeger M (2002) Covariance kernels from Bayesian generative models Advances in neural information processing systems, Dietterich TG:Becker S:Ghahramani Z, ed. pp.905

Seung HS, Sompolinsky H, Tishby N (1992) Statistical mechanics of learning from examples. Phys Rev A 45:6056-6091 [PubMed]

Smith N, Gales M (2002) Speech recognition using SVMs Advances in neural information processing systems, Dietterich TG:Becker S:Ghahramani Z, ed. pp.1197

Sonnenburg S, Ratsch G, Jagota A, Muller KR (2002) New methods for splice site recognition Artificial neural networks--ICANN 2002, Dorronsoro J, ed. pp.329

Sugiyama M (2001) A theory of model selection and active learning for supervised learning Unpublished doctoral dissertation

Tsuda K, Kawanabe M (2002) The leave-one-out kernel Artificial neural networks--ICANN 2002, Dorronsoro J, ed. pp.727

Tsuda K, Kawanabe M, Muller KR (2004) Clustering with the Fisher score Advances in neural information processing systems, Becker S:Thrun S:Obermayer K, ed.

Tsuda K, Kawanabe M, Rätsch G, Sonnenburg S, Müller KR (2002) A new discriminative kernel from probabilistic models. Neural Comput 14:2397-414 [Journal] [PubMed]

van_derVaart A (1998) Asymptotic statistics

Vapnik V (1998) Statistical Learning Theory

Vinokourov A, Girolami M (2002) A probabilistic framework for the hierarchic organization and classification of document collections J Intell Inform Systems 18:153-172

Watanabe S (2001) Algebraic analysis for nonidentifiable learning machines. Neural Comput 13:899-933 [PubMed]

Watkin T, Rau A, Biehl M (1993) The statistical mechanics of learning a rule Rev Mod Phys 65:499

Zhang T, Oles F (2000) The value of unlabeled data for classification problems Proceedings of the Seventeenth International Conference on Machine Learning, Langley P, ed. pp.1191

Zien A, Rätsch G, Mika S, Schölkopf B, Lengauer T, Müller KR (2000) Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16:799-807 [PubMed]

(36 refs)