Citation Relationships



Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7-61 [PubMed]

References and models cited by this paper

References and models that cite this paper

Ashhad S, Narayanan R (2013) Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. J Physiol 591:1645-69 [Journal] [PubMed]

   Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013) [Model]

Basak R, Narayanan R (2018) Active dendrites regulate the spatiotemporal spread of signaling microdomains. PLoS Comput Biol 14:e1006485 [Journal] [PubMed]

   Active dendrites shape signaling microdomains in hippocampal neurons (Basak & Narayanan 2018) [Model]

Chen N, Li B, Murphy TH, Raymond LA (2004) Site within N-Methyl-D-aspartate receptor pore modulates channel gating. Mol Pharmacol 65:157-64 [Journal] [PubMed]

Chen N, Ren J, Raymond LA, Murphy TH (2001) Changes in agonist concentration dependence that are a function of duration of exposure suggest N-methyl-D-aspartate receptor nonsaturation during synaptic stimulation. Mol Pharmacol 59:212-9 [Journal] [PubMed]

   NMDA receptor saturation (Chen et al 2001) [Model]

Das A, Narayanan R (2015) Active dendrites mediate stratified gamma-range coincidence detection in hippocampal model neurons. J Physiol 593:3549-76 [Journal] [PubMed]

Momiyama A, Silver RA, Hausser M, Notomi T, Wu Y, Shigemoto R, Cull-Candy SG (2003) The density of AMPA receptors activated by a transmitter quantum at the climbing fibre-Purkinje cell synapse in immature rats. J Physiol 549:75-92 [Journal] [PubMed]

Mukunda CL, Narayanan R (2017) Degeneracy in the regulation of short-term plasticity and synaptic filtering by presynaptic mechanisms. J Physiol 595:2611-2637 [Journal] [PubMed]

   Conductance based model for short term plasticity at CA3-CA1 synapses (Mukunda & Narayanan 2017) [Model]

Narayanan R, Johnston D (2010) The h current is a candidate mechanism for regulating the sliding modification threshold in a BCM-like synaptic learning rule. J Neurophysiol 104:1020-33 [Journal] [PubMed]

   BCM-like synaptic plasticity with conductance-based models (Narayanan Johnston, 2010) [Model]

Wei Y, Ullah G, Ingram J, Schiff SJ (2014) Oxygen and seizure dynamics: II. Computational modeling. J Neurophysiol 112:213-23 [Journal] [PubMed]

(9 refs)