Citation Relationships



Cruse H, Dürr V, Schmitz J (2007) Insect walking is based on a decentralized architecture revealing a simple and robust controller. Philos Trans A Math Phys Eng Sci 365:221-50 [PubMed]

References and models cited by this paper

References and models that cite this paper

Akay T, Haehn S, Schmitz J, Büschges A (2004) Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. J Neurophysiol 92:42-51 [Journal] [PubMed]

Ayers J (2002) A conservative biomimetic control architecture for autonomous underwater robots Neurotechnology for biomimetic robots, Ayers J:Davis JL:Rudolph A, ed. pp.241

BÜSchges A, Schmitz J, BÄSsler U (1995) Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine J Exp Biol 198:435-56 [PubMed]

Bartling C, Schmitz J (2000) Reaction to disturbances of a walking leg during stance. J Exp Biol 203:1211-23 [PubMed]

Bassler U (1983) Neural basis of elementary behavior in stick insects

Bassler U (1988) Functional principles of pattern generation for walking movements of stick insect forelegs: the role of the femoral chordotonal organ afferences J Exp Biol 136:125-147

Bässler U, Büschges A (1998) Pattern generation for stick insect walking movements--multisensory control of a locomotor program. Brain Res Brain Res Rev 27:65-88 [PubMed]

Bassler U, Wegner U (1983) Motor output of the denervated thoracic ventral nerve cord in the stick insect Carausius morosus J Exp Biol 105:127-145

Bell WJ, Kramer E (1979) Search and anemotactic orientation of cockroaches J Insect Physiol 25:631-640

Berkowitz A, Laurent G (1996) Local control of leg movements and motor patterns during grooming in locusts. J Neurosci 16:8067-78 [PubMed]

Blasing B (2006) Crossing large gaps: a simulation study of stick insect behavior Adapt Behav 14:265-285

Bläsing B, Cruse H (2004) Mechanisms of stick insect locomotion in a gap-crossing paradigm. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190:173-83 [Journal] [PubMed]

Blickhan R, Full RJ (1993) Similarity in multilegged locomotion: bouncing like a monopode J Comp Physiol A 173:509-517

Bohm H, Heinzel HG, Scharstein H, Wendler G (1991) The course-control system of beetles walking in an air-current field J Comp Physiol A 169:671-683

Bowerman RF (1975) The control of walking in the scorpion. I. Leg movements during normal walking J Comp Physiol 100:183-196

Brooks RA (1991) Intelligence without reason Proc 12th Int Joint Conf on Artificial Intelligence :569-595

Brunn DE, Dean J (1994) Intersegmental and local interneurons in the metathorax of the stick insect Carausius morosus that monitor middle leg position. J Neurophysiol 72:1208-19 [Journal] [PubMed]

Burrows M (1992) Local circuits for the control of leg movements in an insect. Trends Neurosci 15:226-32 [PubMed]

Burrows M (1996) The neurobiology of an insect brain

Büschges A (2005) Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. J Neurophysiol 93:1127-35 [Journal] [PubMed]

Chang S, Johnston RJ, Frøkjaer-Jensen C, Lockery S, Hobert O (2004) MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 430:785-9 [Journal] [PubMed]

Chasserat C, Clarac F (1980) Interlimb coordinating factors during driven walking in crustacea. A comparative study of absolute and relative coordination J Comp Physiol 139:293-306

Clarac F, Cruse H (1982) Comparison of forces developed by the leg of the rock lobster when walking free or on a treadmill Biol Cybern 43:109-114

Comer CM, Parks L, Halvorsen MB, Breese-Terteling A (2003) The antennal system and cockroach evasive behavior. II. Stimulus identification and localization are separable antennal functions. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189:97-103 [Journal] [PubMed]

Cruse H (1976) The control of body position in the stick insect (Carausius morosus), when walking over uneven surfaces Biol Cybern 24:25-33

Cruse H (1976) The function of the legs in the free walking stick insect Carausius morosus J Comp Physiol 112:235-262

Cruse H (1979) The control of the anterior extreme position of the hindleg of a walking insect, Carausius morosus Physiol Entomol 4:121-124

Cruse H (1985) Coactivating influences between neighbouring legs in walking insects J Exp Biol 114:513-519

Cruse H (1985) Which parameters control the leg movement of a walking insect? II. The start of the swing phase J Exp Biol 116:357-362

Cruse H (1990) What mechanisms coordinate leg movement in walking arthropods? Trends Neurosci 13:15-21 [PubMed]

Cruse H (2002) The functional sense of central oscillations in walking. Biol Cybern 86:271-80 [Journal] [PubMed]

Cruse H (2003) The evolution of cognition hypothesis Cogn Sci 27:135-155

Cruse H (2006) Neural networks as cybernetic systems. Brain, minds, and media http:--www.brains-minds-media.org-archive-289

Cruse H, Bartling C (1995) Movement of joint angles in the legs of a walking insect, Carausius morosus J Insect Physiol 41:761-771

Cruse H, Bartling C, Cymbalyuk G, Dean J, Dreifert M (1995) A modular artificial neural net for controlling a six-legged walking system. Biol Cybern 72:421-30 [PubMed]

Cruse H, Bartling C, Dreifert M, Schmitz J, Brunn DE, Dean J, Kindermann T (1995) Walking: a complex behaviour controlled by simple networks Adapt Behav 3:385-418

Cruse H, Bartling C, Kindermann T (1995) High-pass filtered positive feedback for decentralized control of cooperation Advances in artificial life, Moran F, ed. pp.668

Cruse H, Dean J, Suilmann M (1984) The contributions of diverse sense organs in the control of leg movement by a walking insect J Comp Physiol 154:695-705

Cruse H, Epstein S (1982) Peripheral influences on the movement of the legs in a walking insect Carausius morosus J Exp Biol 101:161-170

Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J (1998) Walknet-a biologically inspired network to control six-legged walking. Neural Netw 11:1435-1447 [PubMed]

Cruse H, Knauth A (1989) Coupling mechanisms between the contralateral legs of a walking insect (Carausius morosus) J Exp Biol 144:199-213

Cruse H, Riemenschneider D, Stammer W (1989) Control of body position of a stick insect standing on uneven surfaces Biol Cybern 61:71-77

Cruse H, Saxler G (1980) Oscillations of force in the standing legs of a walking insect (Carausius morosus) Biol Cybern 36:159-163

Cruse H, Schmitz J (1983) The control system of the femur-tibia joint in the standing leg of a walking stick insect Carausius morosus J Exp Biol 102:175-185

Cruse H, Schmitz J, Braun U, Schweins A (1993) Control of body height in a stick insect walking on a treadwheel J Exp Biol 181:141-155

Cruse H, Schwarze W (1988) Mechanisms of coupling between the ipsilateral legs of a walking insect (Carausius morosus) J Exp Biol 138:455-469

Cruse H, Warnecke H (1992) Coordination of the legs of a slow-walking cat. Exp Brain Res 89:147-56 [PubMed]

Dean J (1984) Control of leg protraction in the stick insect: a targeted movement showing compensation for externally applied forces J Comp Physiol A 155:771-781

Dean J (1990) Coding proprioceptive information to control movement to a target: simulation with a simple neural network Biol Cybern 63:115-120

Dean J, Schmitz J (1992) The two groups of sensilla in the ventral coxal hair plate of Carausius morosus have different roles during walking Physiol Entomol 17:331-341

Dean J, Wendler G (1983) Stick insect locomotion on a walking wheel: interleg coordination of leg position J Exp Biol 103:75-94

Degtyarenko AM, Simon ES, Norden-Krichmar T, Burke RE (1998) Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat. J Neurophysiol 79:447-63 [Journal] [PubMed]

Delcomyn F (1980) Neural basis of rhythmic behavior in animals. Science 210:492-8 [PubMed]

Delcomyn F (1987) Motor activity during searching and walking movements of cockroach legs. J Exp Biol 133:111-20 [PubMed]

Diederich B, Schumm M, Cruse H (2002) Stick insects walking along inclined surfaces. Integr Comp Biol 42:165-73 [Journal] [PubMed]

Donelan JM, Pearson KG (2004) Contribution of force feedback to ankle extensor activity in decerebrate walking cats. J Neurophysiol 92:2093-104 [Journal] [PubMed]

Dürr V (2001) Stereotypic leg searching movements in the stick insect: kinematic analysis, behavioural context and simulation. J Exp Biol 204:1589-604 [PubMed]

Durr V (2005) Nutzung taktiler Information von Antennen zur Laufbewegungssteuerung Autonomes Laufen, Pfeiffer F:Cruse H, ed. pp.47

Dürr V (2005) Context-dependent changes in strength and efficacy of leg coordination mechanisms. J Exp Biol 208:2253-67 [Journal] [PubMed]

Dürr V, Ebeling W (2005) The behavioural transition from straight to curve walking: kinetics of leg movement parameters and the initiation of turning. J Exp Biol 208:2237-52 [Journal] [PubMed]

Dürr V, König Y, Kittmann R (2001) The antennal motor system of the stick insect Carausius morosus: anatomy and antennal movement pattern during walking. J Comp Physiol A 187:131-44 [PubMed]

Durr V, Krause A, Schmitz J, Cruse H (2003) Neuroethological concepts and their transfer to walking machines Int J Robot Res 22:151-167

Durr V, Matheson T (2003) Graded limb targeting in an insect is caused by the shift of a single movement pattern. J Neurophysiol 90:1754-65 [Journal] [PubMed]

Durr, Krause A (2001) The stick insect antenna as a biological paragon for an actively moved tactile probe for obstacle detection Climbing and walking robots from biology to industrial applications Proc 4th Int Conf Climbing and Walking Robots, Berns K:Dillmann R, ed. pp.87

Ebeling W, Durr V (2006) Perturbation of leg protraction causes context-dependent modulation of inter-leg coordination, but not of avoidance reflexes. J Exp Biol 209:2199-214

Ekeberg O, Blümel M, Büschges A (2004) Dynamic simulation of insect walking. Arthropod Struct Dev 33:287-300 [Journal] [PubMed]

Ekeberg O, Grillner S (1999) Simulations of neuromuscular control in lamprey swimming. Philos Trans R Soc Lond B Biol Sci 354:895-902 [Journal] [PubMed]

Ekeberg O, Pearson K (2005) Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition. J Neurophysiol 94:4256-68 [Journal] [PubMed]

Espenschied KS, Quinn RD (1996) Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot Robot Auton Syst 18:59-64

Espenschied KS, Quinn RD, Chiel, HJ, Beer RD (1993) Leg coordination mechanisms in stick insect applied to hexapod robot locomotion Adapt Behav 1:455-468

Frik M, Guddat M (1999) A novel approach to autonomous control of walking machines Climbing and walking robots and the suppport technologies for mobile machines Proc of the 2nd Int Conf on Climbing and Walking Robots (CLAWAR 1999), Virk GS:Randall M:Howard D, ed. pp.333

Full RJ, Blickhan R, Ting LH (1991) Leg design in hexapedal runners. J Exp Biol 158:369-90 [PubMed]

Full RJ, Kubow T, Schmitt J, Holmes P, Koditschek D (2002) Quantifying dynamic stability and maneuverability in legged locomotion. Integr Comp Biol 42:149-57 [Journal] [PubMed]

Full RJ, Tu MS (1991) Mechanics of a rapid running insect: two-, four- and six-legged locomotion. J Exp Biol 156:215-31 [PubMed]

Gardner JF (1991) Force distribution in walking machines over rough terrain J Dynamic Syst Meas Control 113:754-758

Geyer H, Seyfarth A, Blickhan R (2003) Positive force feedback in bouncing gaits? Proc Biol Sci 270:2173-83 [Journal] [PubMed]

Gnatzy W, Heulein R (1986) Digger wasp against crickets. I. Receptors involved in the antipredator strategies of the prey Naturwissenschaften 73:212-215

Gorinevsky DM, Shneider AY (1990) Force control in locomotion of legged vehicles over rigid and soft surfaces Int J Robot Res 9:4-17

Graham D (1978) Unusual step patterns in the free walking grasshopper. Neoconocephalus robustus. II. A critical test of the leg interactions underlying different models of hexapodco-ordination J Exp Biol 73:159-172

Graham D (1979) Effects of circum-oesophageal lesion on the behaviour of the stick insect Carausius morosus Biol Cybern 32:139-145

Graham D (1985) Pattern and control of walking in insects Adv Insect Physiol 18:31-140

Grillner S (1981) Control of locomotion in bipeds, tetrapods and fish. Handbook of Physiology, section 1, The Nervous system, vol II, Maryland VB, ed. pp.1179

Grillner S, Deliagina T, Ekeberg O , el Manira A, Hill RH, Lansner A, Orlovsky GN, Wallén P (1995) Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends Neurosci 18:270-9 [PubMed]

Hengstenberg R (1993) Multisensory control in insect oculomotor systems. Rev Oculomot Res 5:285-98 [PubMed]

Holst EV (1939) Die relative Koordinationals Phanomen und als Methode zentralnervoser Funktionsanalyse Erg Physiol 42:228-306

Holst EV (1943) Uber relative Koordination bei Arthropoden Pflugers Arch 246:847-865

Honegger HW (1981) A preliminary note on a new optomotor response in crickets: antennal tracking of moving targets J Comp Physiol A 142:419-421

Horn E, Bischof E (1983) Gravity reception in crickets: the influence of cercal and antennal afferents on the head position J Comp Physiol A 150:93-98

Horseman BG, Gebhardt MJ, Honegger MJ (1997) Involvement of the suboesophageal and thoracic ganglia in the control of antennal movements in crickets J Comp Physiol A 181:195-204

Inman VT, Ralston HJ, Todd F (1981) Human walking

Jander JP (1982) Untersuchungen zum Mechanismus und zur zentralnervosen Steuerung desKurvenlaufs bei Stabheuschrecken (Carausius morosus) Doctoral Dissertation University of Koln

Jander JP (1985) Mechanical stability in stick insects when walking straight and around curves Insect locomotion, Gewecke M:Wendler G, ed. pp.33

Jindrich DL, Full RJ (1999) Many-legged maneuverability: dynamics of turning in hexapods J Exp Biol 202 (Pt 12):1603-23 [PubMed]

Jindrich DL, Full RJ (2002) Dynamic stabilization of rapid hexapedal locomotion. J Exp Biol 205:2803-23 [PubMed]

Kawato M, Gomi H (1992) The cerebellum and VOR/OKR learning models. Trends Neurosci 15:445-53 [PubMed]

Kindermann T (2002) Behavior and adaptability of a six-legged walking system with highly distributed control Adapt Behav 9:16-41

Klein CA, Kittivatcharapong S (1990) Optimal force distribution for the legs of a walking machine with friction cone constraints IEEE Trans Robot Automat 6:73-85

Linder C (2005) Self-organization in a simple task of motor control based on spatial encoding Adapt Behav 13:189-209

Linder CR (2002) Self organisation in a simple task of motor control Proc Seventh Int Conf on Simulation of Adaptive Behavior: from animals to animats, Hallam B:Meyer JA:Hayes G:Hallam J:Floreano D, ed. pp.185

Linsenmair KE (1973) Die Windorientierung laufender Insekten Fortschr Zool 21:59-79

Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11:R986-96 [PubMed]

Markowitsch HJ (1997) The functional neuroanatomy of episodic memory retrieval. Trends Neurosci 20:557-8 [PubMed]

Matheson T (1997) Hindleg targeting during scratching in the locust J Exp Biol 200:93-100 [PubMed]

Matheson T, Dürr V (2003) Load compensation in targeted limb movements of an insect. J Exp Biol 206:3175-86 [PubMed]

Muller-wilm U, Dean J, Cruse H, Weidemann HJ, Eltze J, Pfeiffer F (1992) Kinematic model of stick insect as an example of a 6-legged walking system Adapt Behav 1:155-169

Noah JA, Quimby L, Frazier SF, Zill SN (2001) Force detection in cockroach walking reconsidered: discharges of proximal tibial campaniform sensilla when body load is altered. J Comp Physiol A 187:769-84 [PubMed]

Okada J, Toh Y (2000) The role of antennal hair plates in object-guided tactile orientation of the cockroach (Periplaneta americana). J Comp Physiol A 186:849-57 [PubMed]

Pearson KG (1993) Common principles of motor control in vertebrates and invertebrates. Annu Rev Neurosci 16:265-97 [Journal] [PubMed]

Pearson KG, Wolf H (1987) Comparison of motor patterns in the intact and deafferented flight system of the locust. I. Electromyographic analysis J Comp Physiol A 160:259-268

Pelletier Y, McLeod CD (1994) Obstacle perception by insect antennae during terrestrial locomotion Physiol Entomol 19:360-362

Pfeifer R, Scheier C (2001) Understanding intelligence

Pfeiffer F, Eltze J, Weidemann HJ (1995) Six-legged technical walking considering biological principles Robot Autonom Syst 14:223-232

Pfeiffer F, Weidemann HJ, Eltze J, The TUM (1994) The TUM walking machine Intelligent automation and soft computing. Trends in research, development and applications, Jamshidi M, ed. pp.167

Pick S, Strauss R (2005) Goal-driven behavioral adaptations in gap-climbing Drosophila. Curr Biol 15:1473-8 [Journal] [PubMed]

Prochazka A, Gillard D, Bennett DJ (1997) Implications of positive feedback in the control of movement. J Neurophysiol 77:3237-51 [Journal] [PubMed]

Prochazka A, Gillard D, Bennett DJ (1997) Positive force feedback control of muscles. J Neurophysiol 77:3226-36 [Journal] [PubMed]

Prochazka A, Gritsenko V, Yakovenko S (2002) Sensory control of locomotion: reflexes versus higher-level control. Adv Exp Med Biol 508:357-67 [PubMed]

Roggendorf T (2005) Comparing different controllers for the coordination of a six-legged walker. Biol Cybern 92:261-74 [Journal] [PubMed]

Schief A, von Seelen W, Stagge J, Winkler G (1971) [Reception of disrupted signals by the weak electric fish Gnathonemus petersii]. Kybernetik 9:34-43 [PubMed]

Schmitz J (1993) Load-compensating reactions in the proximal leg joints of stick insects during standing and walking J Exp Biol 183:15-33

Schmitz J, Bartling C, Brunn DE, Cruse H, Dean J, Kindermann T, Schumm M, Wagner H (1995) Adaptive properties of hard-wired neuronal systems Verh Dt Zool Ges 88:165-179

Schmitz J, Dean J, Kindermann T, Schumm M, Cruse H (2001) A biologically inspired controller for hexapod walking: simple solutions by exploiting physical properties. Biol Bull 200:195-200 [Journal] [PubMed]

Schmitz J, Hafeld G (1989) The treading-on-tarsus reflex in stick insects: phase-dependence and modifications of the motor output during walking J Exp Biol 143:373-388

Schmitz J, Schumann K, Kamp AV (2000) Mechanisms for self-adaptation of posture and movement to increased load Soc Neursci Abstr

Schneider A, Cruse H, Schmitz J (2005) A biologically inspired active compliant joint using local positive velocity feedback (LPVF). IEEE Trans Syst Man Cybern B Cybern 35:1120-30 [PubMed]

Schneider A, Cruse H, Schmitz J (2006) Decentralized control of elastic limbs in closed kinematic chains Int J Robot Res 25:913-930

Schumm M, Cruse H (2006) Control of swing movement: influences of differently shaped substrate. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:1147-64 [Journal] [PubMed]

Siegler MV, Burrows M (1986) Receptive fields of motor neurons underlying local tactile reflexes in the locust. J Neurosci 6:507-13 [PubMed]

Staudacher E, Gebhardt MJ, Durr V (2005) Antennal movements and mechanoreception: neurobiology of active tactile sensors Adv Insect Physiol 32:49-205

Stierle IE, Getman M, Comer CM (1994) Multisensory control of escape in the cockroach Periplaneta americana. I. Initial evidence from patterns of wind-evoked behavior J Comp Physiol A 174:1-11

Ting LH, Blickhan R, Full RJ (1994) Dynamic and static stability in hexapedal runners. J Exp Biol 197:251-69 [PubMed]

Tryba AK, Ritzmann RE (2000) Multi-joint coordination during walking and foothold searching in the Blaberus cockroach. I. Kinematics and electromyograms. J Neurophysiol 83:3323-36 [Journal] [PubMed]

Watson JT, Ritzmann RE (1998) Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: I. Slow running. J Comp Physiol A 182:11-22 [PubMed]

Wendler G (1964) Laufen und Stehen der Stabheuschrecke: Sinnesborsten in den Beingelenken alsGlieder von Regelkreisen Z Vergl Physiol 48:198-250

Wilson DM (1966) Insect walking. Annu Rev Entomol 11:103-22 [Journal] [PubMed]

Wolf H, Pearson KG (1987) Comparison of motor patterns in the intact and deafferented flight system of the locust J Comp Physiol A 160:2691-279

Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3 Suppl:1212-7 [Journal] [PubMed]

Yakovenko S, Gritsenko V, Prochazka A (2004) Contribution of stretch reflexes to locomotor control: a modeling study. Biol Cybern 90:146-55 [Journal] [PubMed]

Zill S, Schmitz J, Büschges A (2004) Load sensing and control of posture and locomotion. Arthropod Struct Dev 33:273-86 [Journal] [PubMed]

Zollikofer C (1994) STEPPING PATTERNS IN ANTS - INFLUENCE OF SPEED AND CURVATURE J Exp Biol 192:95-106 [PubMed]

(140 refs)