Citation Relationships



Gu N, Vervaeke K, Storm JF (2007) BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J Physiol 580:859-82 [PubMed]

References and models cited by this paper

References and models that cite this paper

Adams PR, Constanti A, Brown DA, Clark RB (1982) Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurones. Nature 296:746-9 [PubMed]

Adams PR, Jones SW, Pennefather P, Brown DA, Koch C, Lancaster B (1986) Slow synaptic transmission in frog sympathetic ganglia. J Exp Biol 124:259-85 [PubMed]

Akaike N, Sadoshima J (1989) Caffeine affects four different ionic currents in the bull-frog sympathetic neurone. J Physiol 412:221-44 [PubMed]

Alger BE, Williamson A (1988) A transient calcium-dependent potassium component of the epileptiform burst after-hyperpolarization in rat hippocampus. J Physiol 399:191-205 [PubMed]

Beckh S, Pongs O (1990) Members of the RCK potassium channel family are differentially expressed in the rat nervous system. EMBO J 9:777-82 [PubMed]

Berkefeld H, Sailer CA, Bildl W, Rohde V, Thumfart JO, Eble S, Klugbauer N, Reisinger E, Bischofberger J, Oliver D, Knaus HG, Schulte U, Fakler B (2006) BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science 314:615-20 [Journal] [PubMed]

Blatz AL, Magleby KL (1987) Calcium-activated potassium channels Trends Neurosci 10:463-467

Borg-graham L (1987) Modelling the somatic electrical behavior of hippocampal pyramidal neurons Masters Thesis

Borg-graham L (1999) Interpretations of data and mechanisms for hippocampal pyramidal cell models Cerebral Cortex cortical Models, Jones E:Ulinski P:Peters A, ed. pp.19

Borg-Graham LJ (2000) Additional efficient computation of branched nerve equations: adaptive time step and ideal voltage clamp. J Comput Neurosci 8:209-26 [PubMed]

Brenner R, Chen QH, Vilaythong A, Toney GM, Noebels JL, Aldrich RW (2005) BK channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nat Neurosci 8:1752-9 [Journal] [PubMed]

Brown DA, Adams PR (1980) Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283:673-6 [PubMed]

Browne DL, Gancher ST, Nutt JG, Brunt ER, Smith EA, Kramer P, Litt M (1994) Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet 8:136-40 [Journal] [PubMed]

Cai X, Liang CW, Muralidharan S, Muralidharan S, Kao JP, Tang CM, Thompson SM (2004) Unique roles of SK and Kv4.2 potassium channels in dendritic integration. Neuron 44:351-64 [Journal] [PubMed]

Connor JA, Stevens CF (1971) Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J Physiol 213:31-53 [PubMed]

Du J, Haak LL, Phillips-Tansey E, Russell JT, McBain CJ (2000) Frequency-dependent regulation of rat hippocampal somato-dendritic excitability by the K+ channel subunit Kv2.1. J Physiol 522 Pt 1:19-31 [PubMed]

Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang L, Kotagal P, Lüders HO, Shi J, Cui J, Richerson GB, Wang QK (2005) Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 37:733-8 [Journal] [PubMed]

Erisir A, Lau D, Rudy B, Leonard CS (1999) Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. J Neurophysiol 82:2476-89 [Journal] [PubMed]

Galvez A, Gimenez-Gallego G, Reuben JP, Roy-Contancin L, Feigenbaum P, Kaczorowski GJ, Garcia ML (1990) Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. J Biol Chem 265:11083-90 [PubMed]

Gho M, Ganetzky B (1992) Analysis of repolarization of presynaptic motor terminals in Drosophila larvae using potassium-channel-blocking drugs and mutations. J Exp Biol 170:93-111 [PubMed]

Gola M, Crest M (1993) Colocalization of active KCa channels and Ca2+ channels within Ca2+ domains in helix neurons. Neuron 10:689-99 [PubMed]

Goldberg EM, Watanabe S, Chang SY, Joho RH, Huang ZJ, Leonard CS, Rudy B (2005) Specific functions of synaptically localized potassium channels in synaptic transmission at the neocortical GABAergic fast-spiking cell synapse. J Neurosci 25:5230-5 [Journal] [PubMed]

Graham L (2002) The Surf-Hippo Neuron Simulation System http:--www.cnrs-gif.fr-iaf-iaf9-surf-hippo.html

Gu N, Vervaeke K, Hu H, Storm JF (2005) Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol 566:689-715 [Journal] [PubMed]

Gu N, Vervaeke K, Storm JF (2006) Large-conductance calcium-activated K+ channels (BK) channels promote high-frequency firing in rat CA1 hippocampal pyramidal neurons FENS Forum Abstracts 3:A189.7

Gustafsson B, Galvan M, Grafe P, Wigström H (1982) A transient outward current in a mammalian central neurone blocked by 4-aminopyridine. Nature 299:252-4 [PubMed]

Hadley JK, Noda M, Selyanko AA, Wood IC, Abogadie FC, Brown DA (2000) Differential tetraethylammonium sensitivity of KCNQ1-4 potassium channels. Br J Pharmacol 129:413-5 [Journal] [PubMed]

Halvorsrud R, Shao LR, Bouskila Y, Ramakers GMJ, Storm JF (1999) Evidence that BK-type Ca2 +-dependent K+ channels contribute to frequency-dependent action potential broadening in rat CA1 hippocampal pyramidal cells Soc Neurosci Abstra 25:453

Harris KD, Hirase H, Leinekugel X, Henze DA, Buzsáki G (2001) Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron 32:141-9 [PubMed]

Hille B (2001) Classic mechanisms of block Ion Channels of Excitable Membranes (3rd edn) :503-537

Hines M (1984) Efficient computation of branched nerve equations. Int J Biomed Comput 15:69-76 [PubMed]

HODGKIN AL, HUXLEY AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449-72 [PubMed]

Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869-75 [Journal] [PubMed]

Hotson JR, Prince DA (1981) Penicillin- and barium-induced epileptiform bursting in hippocampal neurons: actions on Ca++ and K+ potentials. Ann Neurol 10:11-7 [Journal] [PubMed]

Hu H, Shao LR, Chavoshy S, Gu N, Trieb M, Behrens R, Laake P, Pongs O, Knaus HG, Ottersen OP, Storm JF (2001) Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci 21:9585-97 [PubMed]

Hu H, Vervaeke K, Storm JF (2002) Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J Physiol 545:783-805 [PubMed]

Jin W, Sugaya A, Tsuda T, Ohguchi H, Sugaya E (2000) Relationship between large conductance calcium-activated potassium channel and bursting activity. Brain Res 860:21-8 [PubMed]

Johnston D, Hoffman DA, Magee JC, Poolos NP, Watanabe S, Colbert CM, Migliore M (2000) Dendritic potassium channels in hippocampal pyramidal neurons. J Physiol 525 Pt 1:75-81 [PubMed]

Lancaster B, Adams PR (1986) Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J Neurophysiol 55:1268-82 [Journal] [PubMed]

Lancaster B, Nicoll RA (1987) Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J Physiol 389:187-203 [PubMed]

Lien CC, Jonas P (2003) Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci 23:2058-68 [PubMed]

Madison DV, Nicoll RA (1982) Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299:636-8 [PubMed]

Madison DV, Nicoll RA (1984) Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol 354:319-31 [PubMed]

Marrion NV, Tavalin SJ (1998) Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature 395:900-5 [Journal] [PubMed]

Marty A (1989) The physiological role of calcium-dependent channels. Trends Neurosci 12:420-4 [PubMed]

Nelson AB, Krispel CM, Sekirnjak C, du Lac S (2003) Long-lasting increases in intrinsic excitability triggered by inhibition. Neuron 40:609-20 [PubMed]

Ngo-Anh TJ, Bloodgood BL, Lin M, Sabatini BL, Maylie J, Adelman JP (2005) SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat Neurosci 8:642-9 [Journal] [PubMed]

Partridge LD, Stevens CF (1976) A mechanism for spike frequency adaptation. J Physiol 256:315-32 [PubMed]

Pedarzani P, Storm JF (1993) PKA mediates the effects of monoamine transmitters on the K+ current underlying the slow spike frequency adaptation in hippocampal neurons. Neuron 11:1023-35 [PubMed]

Peters HC, Hu H, Pongs O, Storm JF, Isbrandt D (2005) Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci 8:51-60 [Journal] [PubMed]

Rall W, Burke RE, Holmes WR, Jack JJ, Redman SJ, Segev I (1992) Matching dendritic neuron models to experimental data. Physiol Rev 72:S159-86 [Journal] [PubMed]

Ramakers GM, Storm JF (2002) A postsynaptic transient K(+) current modulated by arachidonic acid regulates synaptic integration and threshold for LTP induction in hippocampal pyramidal cells. Proc Natl Acad Sci U S A 99:10144-9 [Journal] [PubMed]

Ranck JB (1973) Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Exp Neurol 41:461-531 [PubMed]

Rudy B, Chow A, Lau D, Amarillo Y, Ozaita A, Saganich M, Moreno H, Nadal MS, Hernandez-Pineda R, Hernandez-Cruz A, Erisir A, Leonard C, Vega-Saenz de Miera E (1999) Contributions of Kv3 channels to neuronal excitability. Ann N Y Acad Sci 868:304-43 [PubMed]

Rudy B, McBain CJ (2001) Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci 24:517-26 [PubMed]

Rutecki PA, Lebeda FJ, Johnston D (1987) 4-Aminopyridine produces epileptiform activity in hippocampus and enhances synaptic excitation and inhibition. J Neurophysiol 57:1911-24 [Journal] [PubMed]

Sah P, Faber ES (2002) Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol 66:345-53 [PubMed]

Sah P, McLachlan EM (1992) Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons. J Neurophysiol 68:1834-41 [Journal] [PubMed]

Salkoff L, Butler A, Ferreira G, Santi C, Wei A (2006) High-conductance potassium channels of the SLO family. Nat Rev Neurosci 7:921-31 [Journal] [PubMed]

Sausbier M, Hu H, Arntz C, Feil S, Kamm S, Adelsberger H, Sausbier U, Sailer CA, Feil R, Hofmann F, Korth M, Shipston MJ, Knaus HG, Wolfer DP, Pedroarena CM, Storm JF, Ruth P (2004) Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency. Proc Natl Acad Sci U S A 101:9474-8 [Journal] [PubMed]

Schwindt PC, Spain WJ, Foehring RC, Stafstrom CE, Chubb MC, Crill WE (1988) Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro. J Neurophysiol 59:424-49 [Journal] [PubMed]

Shao LR, Halvorsrud R, Borg-Graham L, Storm JF (1999) The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. J Physiol 521 Pt 1:135-46 [PubMed]

Shao LR, Halvorsrud R, Bouskila Y, Ramakers GMJ, Borg-graham L, Storm JF (1999) Evidence that BK-type Ca2+-dependent K+ channels contribute to frequency-dependent action potential broadening in rat CA1 hippocampal pyramidal cells. The Physiologist

Smart SL, Lopantsev V, Zhang CL, Robbins CA, Wang H, Chiu SY, Schwartzkroin PA, Messing A, Tempel BL (1998) Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron 20:809-19 [PubMed]

Steinlein OK (2001) Genes and mutations in idiopathic epilepsy. Am J Med Genet 106:139-45 [Journal] [PubMed]

Stocker M, Krause M, Pedarzani P (1999) An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proc Natl Acad Sci U S A 96:4662-7 [PubMed]

Storm JF (1987) Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells. J Physiol 385:733-59 [PubMed]

Storm JF (1987) Intracellular injection of a Ca2+ chelator inhibits spike repolarization in hippocampal neurons. Brain Res 435:387-92 [PubMed]

Storm JF (1988) Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature 336:379-81 [Journal] [PubMed]

Storm JF (1989) An after-hyperpolarization of medium duration in rat hippocampal pyramidal cells. J Physiol 409:171-90 [PubMed]

Storm JF (1990) Potassium currents in hippocampal pyramidal cells. Prog Brain Res 83:161-87 [PubMed]

Storm JF, Sartorius T, Gu N, Sausbier M, Sausbier U, Ruth P (2006) Alterations in cortical EEG activity, neuronal excitability and sleep-wake behavior in BK channel-deficient mice Soc Neurosci Abstr 627.9, D23

Stuart G, Spruston N (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18:3501-10 [PubMed]

   Pyramidal Neuron Deep: attenuation in dendrites (Stuart, Spruston 1998) [Model]

Swensen AM, Bean BP (2003) Ionic mechanisms of burst firing in dissociated Purkinje neurons. J Neurosci 23:9650-63 [PubMed]

Takahashi T (1990) Membrane currents in visually identified motoneurones of neonatal rat spinal cord. J Physiol 423:27-46 [PubMed]

Vergara C, Latorre R, Marrion NV, Adelman JP (1998) Calcium-activated potassium channels. Curr Opin Neurobiol 8:321-9 [PubMed]

Vervaeke K, Gu N, Storm JF (2006) Large conductance calcium activated K+ (BK) channels promote high frequency firing in rat CA1 hippocampal pyramidal neurons Soc Neurosci Abstr 627.7, D21

Vervaeke K, Hu H, Graham LJ, Storm JF (2006) Contrasting effects of the persistent Na+ current on neuronal excitability and spike timing. Neuron 49:257-70 [Journal] [PubMed]

Wang HS, Pan Z, Shi W, Brown BS, Wymore RS, Cohen IS, Dixon JE, McKinnon D (1998) KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282:1890-3 [PubMed]

Williamson A, Alger BE (1990) Characterization of an early afterhyperpolarization after a brief train of action potentials in rat hippocampal neurons in vitro. J Neurophysiol 63:72-81 [Journal] [PubMed]

Womack MD, Khodakhah K (2002) Characterization of large conductance Ca2+-activated K+ channels in cerebellar Purkinje neurons. Eur J Neurosci 16:1214-22 [PubMed]

Zbicz KL, Weight FF (1985) Transient voltage and calcium-dependent outward currents in hippocampal CA3 pyramidal neurons. J Neurophysiol 53:1038-58 [Journal] [PubMed]

Zhang L, McBain CJ (1995) Potassium conductances underlying repolarization and after-hyperpolarization in rat CA1 hippocampal interneurones. J Physiol 488 ( Pt 3):661-72 [PubMed]

Zhang L, Weiner JL, Valiante TA, Velumian AA, Watson PL, Jahromi SS, Schertzer S, Pennefather P, Carlen PL (1994) Whole-cell recording of the Ca(2+)-dependent slow afterhyperpolarization in hippocampal neurones: effects of internally applied anions. Pflugers Arch 426:247-53 [PubMed]

Zhang XF, Gopalakrishnan M, Shieh CC (2003) Modulation of action potential firing by iberiotoxin and NS1619 in rat dorsal root ganglion neurons. Neuroscience 122:1003-11 [PubMed]

Burrell BD, Crisp KM (2008) Serotonergic modulation of afterhyperpolarization in a neuron that contributes to learning in the leech. J Neurophysiol 99:605-16 [Journal] [PubMed]

   Leech S Cell: Modulation of Excitability by Serotonin (Burrell and Crisp 2008) [Model]

Jaffe DB, Brenner R (2018) A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons. J Neurophysiol 119:1506-1520 [Journal] [PubMed]

   Paradoxical effect of fAHP amplitude on gain in dentate gyrus granule cells (Jaffe & Brenner 2018) [Model]

Jaffe DB, Wang B, Brenner R (2011) Shaping of action potentials by type I and type II large-conductance Ca²+-activated K+ channels. Neuroscience 192:205-18 [Journal] [PubMed]

   Shaping of action potentials by different types of BK channels (Jaffe et al., 2011) [Model]

Peron S, Gabbiani F (2009) Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron. Nat Neurosci 12:318-26 [Journal] [PubMed]

   Spike frequency adaptation in the LGMD (Peron and Gabbiani 2009) [Model]

(89 refs)