Citation Relationships



Mahajan A, Shiferaw Y, Sato D, Baher A, Olcese R, Xie LH, Yang MJ, Chen PS, Restrepo JG, Karma A, Garfinkel A, Qu Z, Weiss JN (2008) A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophys J 94:392-410 [PubMed]

References and models cited by this paper

References and models that cite this paper

Bassani JW, Yuan W, Bers DM (1995) Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am J Physiol 268:C1313-9 [Journal] [PubMed]

Bers DM (2001) Excitation-Contraction Coupling and Cardiac Contractile Force (2nd edn)

Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198-205 [Journal] [PubMed]

Blatter LA, Kockskämper J, Sheehan KA, Zima AV, Hüser J, Lipsius SL (2003) Local calcium gradients during excitation-contraction coupling and alternans in atrial myocytes. J Physiol 546:19-31 [PubMed]

Bondarenko VE, Bett GC, Rasmusson RL (2004) A model of graded calcium release and L-type Ca2+ channel inactivation in cardiac muscle. Am J Physiol Heart Circ Physiol 286:H1154-69 [Journal] [PubMed]

Bondarenko VE, Szigeti GP, Bett GC, Kim SJ, Rasmusson RL (2004) Computer model of action potential of mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 287:H1378-403 [Journal] [PubMed]

Brochet DX, Yang D, Di Maio A, Lederer WJ, Franzini-Armstrong C, Cheng H (2005) Ca2+ blinks: rapid nanoscopic store calcium signaling. Proc Natl Acad Sci U S A 102:3099-104 [Journal] [PubMed]

Cavalié A, Ochi R, Pelzer D, Trautwein W (1983) Elementary currents through Ca2+ channels in guinea pig myocytes. Pflugers Arch 398:284-97 [PubMed]

Cavalié A, Pelzer D, Trautwein W (1986) Fast and slow gating behaviour of single calcium channels in cardiac cells. Relation to activation and inactivation of calcium-channel current. Pflugers Arch 406:241-58 [PubMed]

Cens T, Rousset M, Leyris JP, Fesquet P, Charnet P (2006) Voltage- and calcium-dependent inactivation in high voltage-gated Ca(2+) channels. Prog Biophys Mol Biol 90:104-17 [Journal] [PubMed]

Chudin E, Goldhaber J, Garfinkel A, Weiss J, Kogan B (1999) Intracellular Ca(2+) dynamics and the stability of ventricular tachycardia. Biophys J 77:2930-41 [Journal] [PubMed]

Clancy CE, Rudy Y (1999) Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 400:566-9 [Journal] [PubMed]

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]

Clancy CE, Rudy Y (2001) Cellular consequences of HERG mutations in the long QT syndrome: precursors to sudden cardiac death. Cardiovasc Res 50:301-13 [PubMed]

   Consequences of HERG mutations in the long QT syndrome (Clancy, Rudy 2001) [Model]

Díaz ME, Eisner DA, O'Neill SC (2002) Depressed ryanodine receptor activity increases variability and duration of the systolic Ca2+ transient in rat ventricular myocytes. Circ Res 91:585-93 [PubMed]

Díaz ME, O'Neill SC, Eisner DA (2004) Sarcoplasmic reticulum calcium content fluctuation is the key to cardiac alternans. Circ Res 94:650-6 [Journal] [PubMed]

Doerr T, Denger R, Doerr A, Trautwein W (1990) Ionic currents contributing to the action potential in single ventricular myocytes of the guinea pig studied with action potential clamp. Pflugers Arch 416:230-7 [PubMed]

Faber GM, Silva J, Livshitz L, Rudy Y (2007) Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: a theoretical investigation. Biophys J 92:1522-43 [Journal] [PubMed]

Findlay I (2002) Voltage- and cation-dependent inactivation of L-type Ca2+ channel currents in guinea-pig ventricular myocytes. J Physiol 541:731-40 [PubMed]

Fox JJ, McHarg JL, Gilmour RF (2002) Ionic mechanism of electrical alternans. Am J Physiol Heart Circ Physiol 282:H516-30 [Journal] [PubMed]

   Ionic basis of alternans and Timothy Syndrome (Fox et al. 2002), (Zhu and Clancy 2007) [Model]

Franzini-Armstrong C, Protasi F, Tijskens P (2005) The assembly of calcium release units in cardiac muscle. Ann N Y Acad Sci 1047:76-85 [Journal] [PubMed]

Garfinkel A, Kim YH, Voroshilovsky O, Qu Z, Kil JR, Lee MH, Karagueuzian HS, Weiss JN, Chen PS (2000) Preventing ventricular fibrillation by flattening cardiac restitution. Proc Natl Acad Sci U S A 97:6061-6 [Journal] [PubMed]

Goldhaber JI, Xie LH, Duong T, Motter C, Khuu K, Weiss JN (2005) Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling. Circ Res 96:459-66 [Journal] [PubMed]

Hagiwara S, Ohmori H (1983) Studies of single calcium channel currents in rat clonal pituitary cells. J Physiol 336:649-61 [PubMed]

Harris DM, Mills GD, Chen X, Kubo H, Berretta RM, Votaw VS, Santana LF, Houser SR (2005) Alterations in early action potential repolarization causes localized failure of sarcoplasmic reticulum Ca2+ release. Circ Res 96:543-50 [Journal] [PubMed]

Hund TJ, Rudy Y (2004) Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation 110:3168-74 [Journal] [PubMed]

   A dynamic model of the canine ventricular myocyte (Hund, Rudy 2004) [Model]

Imredy JP, Yue DT (1994) Mechanism of Ca(2+)-sensitive inactivation of L-type Ca2+ channels. Neuron 12:1301-18 [PubMed]

Jafri MS, Rice JJ, Winslow RL (1998) Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys J 74:1149-68 [Journal] [PubMed]

Langer GA, Peskoff A (1996) Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell. Biophys J 70:1169-82 [Journal] [PubMed]

Langer GA, Peskoff A (1997) Role of the diadic cleft in myocardial contractile control. Circulation 96:3761-5 [PubMed]

Lee KS, Marban E, Tsien RW (1985) Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J Physiol 364:395-411 [PubMed]

Li GR, Yang B, Feng J, Bosch RF, Carrier M, Nattel S (1999) Transmembrane ICa contributes to rate-dependent changes of action potentials in human ventricular myocytes. Am J Physiol 276:H98-H106 [Journal] [PubMed]

Lindblad DS, Murphey CR, Clark JW, Giles WR (1996) A model of the action potential and underlying membrane currents in a rabbit atrial cell. Am J Physiol 271:H1666-96 [Journal] [PubMed]

Livshitz LM, Rudy Y (2007) Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. Am J Physiol Heart Circ Physiol 292:H2854-66 [Journal] [PubMed]

Luo CH, Rudy Y (1991) A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ Res 68:1501-26 [PubMed]

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]
   Cardiac action potential based on Luo-Rudy phase 1 model (Luo and Rudy 1991), (Wu 2004) [Model]

Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74:1071-96 [PubMed]

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]

Nolasco JB, Dahlen RW (1968) A graphic method for the study of alternation in cardiac action potentials. J Appl Physiol 25:191-6 [Journal] [PubMed]

Omichi C, Lamp ST, Lin SF, Yang J, Baher A, Zhou S, Attin M, Lee MH, Karagueuzian HS, Kogan B, Qu Z, Garfinkel A, Chen PS, Weiss JN (2004) Intracellular Ca dynamics in ventricular fibrillation. Am J Physiol Heart Circ Physiol 286:H1836-44 [Journal] [PubMed]

Picht E, DeSantiago J, Blatter LA, Bers DM (2006) Cardiac alternans do not rely on diastolic sarcoplasmic reticulum calcium content fluctuations. Circ Res 99:740-8

Pruvot E, Katra RP, Rosenbaum DS (2002) Calcium cycling as mechanism of repolarization alternans onset in the intact heart Circulation 106:191-192

Pruvot EJ, Katra RP, Rosenbaum DS, Laurita KR (2004) Role of calcium cycling versus restitution in the mechanism of repolarization alternans. Circ Res 94:1083-90 [Journal] [PubMed]

Puglisi JL, Bers DM (2001) LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. Am J Physiol Cell Physiol 281:C2049-60 [Journal] [PubMed]

   A cardiac cell simulator (Puglisi and Bers 2001), applied to the QT interval (Busjahn et al 2004) [Model]

Rae J, Cooper K, Gates P, Watsky M (1991) Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods 37:15-26 [PubMed]

Rose WC, Balke CW, Wier WG, Marban E (1992) Macroscopic and unitary properties of physiological ion flux through L-type Ca2+ channels in guinea-pig heart cells. J Physiol 456:267-84 [PubMed]

Sah R, Ramirez RJ, Oudit GY, Gidrewicz D, Trivieri MG, Zobel C, Backx PH (2003) Regulation of cardiac excitation-contraction coupling by action potential repolarization: role of the transient outward potassium current (I(to)). J Physiol 546:5-18 [PubMed]

Santana LF, Cheng H, Gómez AM, Cannell MB, Lederer WJ (1996) Relation between the sarcolemmal Ca2+ current and Ca2+ sparks and local control theories for cardiac excitation-contraction coupling. Circ Res 78:166-71 [PubMed]

Sato D, Shiferaw Y, Garfinkel A, Weiss JN, Qu Z, Karma A (2006) Spatially discordant alternans in cardiac tissue: role of calcium cycling. Circ Res 99:520-7 [Journal] [PubMed]

Sham JS, Cleemann L, Morad M (1995) Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes. Proc Natl Acad Sci U S A 92:121-5 [PubMed]

Sham JS, Song LS, Chen Y, Deng LH, Stern MD, Lakatta EG, Cheng H (1998) Termination of Ca2+ release by a local inactivation of ryanodine receptors in cardiac myocytes. Proc Natl Acad Sci U S A 95:15096-101 [PubMed]

Shannon TR, Ginsburg KS, Bers DM (2000) Reverse mode of the sarcoplasmic reticulum calcium pump and load-dependent cytosolic calcium decline in voltage-clamped cardiac ventricular myocytes. Biophys J 78:322-33 [Journal] [PubMed]

Shannon TR, Ginsburg KS, Bers DM (2000) Potentiation of fractional sarcoplasmic reticulum calcium release by total and free intra-sarcoplasmic reticulum calcium concentration. Biophys J 78:334-43 [Journal] [PubMed]

Shannon TR, Wang F, Puglisi J, Weber C, Bers DM (2004) A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys J 87:3351-71 [Journal] [PubMed]

Shiferaw Y, Sato D, Karma A (2005) Coupled dynamics of voltage and calcium in paced cardiac cells. Phys Rev E Stat Nonlin Soft Matter Phys 71:021903 [Journal] [PubMed]

Soldatov NM (2003) Ca2+ channel moving tail: link between Ca2+-induced inactivation and Ca2+ signal transduction. Trends Pharmacol Sci 24:167-71 [Journal] [PubMed]

Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH, Sanguinetti MC, Keating MT (2005) Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A 102:8089-96; discussion 8086-8 [Journal] [PubMed]

Stern MD (1992) Theory of excitation-contraction coupling in cardiac muscle. Biophys J 63:497-517 [Journal] [PubMed]

Terentyev D, Viatchenko-Karpinski S, Györke I, Volpe P, Williams SC, Györke S (2003) Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: Mechanism for hereditary arrhythmia. Proc Natl Acad Sci U S A 100:11759-64 [Journal] [PubMed]

Tohse N (1990) Calcium-sensitive delayed rectifier potassium current in guinea pig ventricular cells. Am J Physiol 258:H1200-7 [Journal] [PubMed]

Tsien RW (1983) Calcium channels in excitable cell membranes. Annu Rev Physiol 45:341-58 [Journal] [PubMed]

Weber CR, Piacentino V, Ginsburg KS, Houser SR, Bers DM (2002) Na(+)-Ca(2+) exchange current and submembrane [Ca(2+)] during the cardiac action potential. Circ Res 90:182-9 [PubMed]

Weiss JN, Qu Z, Chen PS, Lin SF, Karagueuzian HS, Hayashi H, Garfinkel A, Karma A (2005) The dynamics of cardiac fibrillation. Circulation 112:1232-40 [Journal] [PubMed]

Wier WG, Egan TM, López-López JR, Balke CW (1994) Local control of excitation-contraction coupling in rat heart cells. J Physiol 474:463-71 [PubMed]

Winslow RL, Rice J, Jafri S, Marbán E, O'Rourke B (1999) Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ Res 84:571-86 [PubMed]

   Kv4.3, Kv1.4 encoded K channel in heart cells & tachy. (Winslow et al 1999, Greenstein et al 2000) [Model]

(62 refs)