Citation Relationships



Frank MJ, Samanta J, Moustafa AA, Sherman SJ (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318:1309-12 [PubMed]

   Roles of subthalamic nucleus and DBS in reinforcement conflict-based decision making (Frank 2006)

References and models cited by this paper

References and models that cite this paper

Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack RA (2007) Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J Neurosci 27:3743-52 [Journal] [PubMed]

Baunez C, Christakou A, Chudasama Y, Forni C, Robbins TW (2007) Bilateral high-frequency stimulation of the subthalamic nucleus on attentional performance: transient deleterious effects and enhanced motivation in both intact and parkinsonian rats. Eur J Neurosci 25:1187-94 [Journal] [PubMed]

Baunez C, Robbins TW (1997) Bilateral lesions of the subthalamic nucleus induce multiple deficits in an attentional task in rats. Eur J Neurosci 9:2086-99 [PubMed]

Benabid AL (2003) Deep brain stimulation for Parkinson's disease. Curr Opin Neurobiol 13:696-706 [PubMed]

Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436-8 [PubMed]

Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD (2006) The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol Rev 113:700-65 [Journal] [PubMed]

Bogacz R, Gurney K (2007) The basal ganglia and cortex implement optimal decision making between alternative actions. Neural Comput 19:442-77 [Journal] [PubMed]

Botvinick M, Nystrom LE, Fissell K, Carter CS, Cohen JD (1999) Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402:179-81 [Journal] [PubMed]

Cools R, Altamirano L, D'Esposito M (2006) Reversal learning in Parkinson's disease depends on medication status and outcome valence. Neuropsychologia 44:1663-73 [Journal] [PubMed]

Dodd ML, Klos KJ, Bower JH, Geda YE, Josephs KA, Ahlskog JE (2005) Pathological gambling caused by drugs used to treat Parkinson disease. Arch Neurol 62:1377-81 [Journal] [PubMed]

Drapier S, Raoul S, Drapier D, Leray E, Lallement F, Rivier I, Sauleau P, Lajat Y, Edan G, Vérin M (2005) Only physical aspects of quality of life are significantly improved by bilateral subthalamic stimulation in Parkinson's disease. J Neurol 252:583-8 [Journal] [PubMed]

Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci 17:51-72 [Journal] [PubMed]

   Dynamic dopamine modulation in the basal ganglia: Learning in Parkinson (Frank et al 2004,2005) [Model]

Frank MJ (2006) Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw 19:1120-36 [Journal] [PubMed]

   Roles of subthalamic nucleus and DBS in reinforcement conflict-based decision making (Frank 2006) [Model]

Frank MJ, Moustafa AA, Haughey HM, Curran T, Hutchison KE (2007) Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proc Natl Acad Sci U S A 104:16311-6 [Journal] [PubMed]

Frank MJ, O'Reilly RC (2006) A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci 120:497-517 [Journal] [PubMed]

Frank MJ, Seeberger LC, O'reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306:1940-3 [Journal] [PubMed]

   Dynamic dopamine modulation in the basal ganglia: Learning in Parkinson (Frank et al 2004,2005) [Model]

Frank MJ, Woroch BS, Curran T (2005) Error-related negativity predicts reinforcement learning and conflict biases. Neuron 47:495-501 [Journal] [PubMed]

Hershey T, Revilla FJ, Wernle A, Gibson PS, Dowling JL, Perlmutter JS (2004) Stimulation of STN impairs aspects of cognitive control in PD. Neurology 62:1110-4 [PubMed]

Humphries MD, Stewart RD, Gurney KN (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 26:12921-42 [Journal] [PubMed]

   Spiking neuron model of the basal ganglia (Humphries et al 2006) [Model]

Liu Y, Postupna N, Falkenberg J, Anderson ME (2008) High frequency deep brain stimulation: what are the therapeutic mechanisms? Neurosci Biobehav Rev 32:343-51 [Journal] [PubMed]

Lo CC, Wang XJ (2006) Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nat Neurosci 9:956-63 [Journal] [PubMed]

Meissner W, Leblois A, Hansel D, Bioulac B, Gross CE, Benazzouz A, Boraud T (2005) Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain 128:2372-82 [Journal] [PubMed]

Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381-425 [PubMed]

Obeso JA, Rodriguez-Oroz MC, Chana P, Lera G, Rodriguez M, Olanow CW (2000) The evolution and origin of motor complications in Parkinson's disease. Neurology 55:S13-20; discussion S21-3 [PubMed]

Orieux G, François C, Féger J, Hirsch EC (2002) Consequences of dopaminergic denervation on the metabolic activity of the cortical neurons projecting to the subthalamic nucleus in the rat. J Neurosci 22:8762-70 [PubMed]

Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20:128-54 [PubMed]

Ratcliff R, Van Zandt T, McKoon G (1999) Connectionist and diffusion models of reaction time. Psychol Rev 106:261-300 [PubMed]

Saint-Cyr JA, Albanese A (2006) STN DBS in PD: selection criteria for surgery should include cognitive and psychiatric factors. Neurology 66:1799-800 [Journal] [PubMed]

Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1-27 [Journal] [PubMed]

Simen P, Cohen JD, Holmes P (2006) Rapid decision threshold modulation by reward rate in a neural network. Neural Netw 19:1013-26 [Journal] [PubMed]

Thobois S, Hotton GR, Pinto S, Wilkinson L, Limousin-Dowsey P, Brooks DJ, Jahanshahi M (2007) STN stimulation alters pallidal-frontal coupling during response selection under competition. J Cereb Blood Flow Metab 27:1173-84 [Journal] [PubMed]

Tversky A, Shafir E (1992) Choice under conflict: The dynamics of deferred decision Psychol Sci 3(6):358-361

Usher M, McClelland JL (2001) The time course of perceptual choice: the leaky, competing accumulator model. Psychol Rev 108:550-92 [PubMed]

Uslaner JM, Robinson TE (2006) Subthalamic nucleus lesions increase impulsive action and decrease impulsive choice - mediation by enhanced incentive motivation? Eur J Neurosci 24:2345-54 [Journal] [PubMed]

Winstanley CA, Baunez C, Theobald DE, Robbins TW (2005) Lesions to the subthalamic nucleus decrease impulsive choice but impair autoshaping in rats: the importance of the basal ganglia in Pavlovian conditioning and impulse control. Eur J Neurosci 21:3107-16 [Journal] [PubMed]

Baladron J, Nambu A, Hamker FH (2019) The subthalamic nucleus-external globus pallidus loop biases exploratory decisions towards known alternatives: a neuro-computational study. Eur J Neurosci 49:754-767 [Journal] [PubMed]

Kato A, Morita K (2016) Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation. PLoS Comput Biol 12:e1005145 [Journal] [PubMed]

   Reinforcement Learning with Forgetting: Linking Sustained Dopamine to Motivation (Kato Morita 2016) [Model]

Moustafa AA, Cohen MX, Sherman SJ, Frank MJ (2008) A role for dopamine in temporal decision making and reward maximization in parkinsonism. J Neurosci 28:12294-304 [Journal] [PubMed]

(38 refs)