Citation Relationships



Manninen T, Hituri K, Kotaleski JH, Blackwell KT, Linne ML (2010) Postsynaptic signal transduction models for long-term potentiation and depression. Front Comput Neurosci 4:152[PubMed]

References and models cited by this paper

References and models that cite this paper

Abarbanel HD, Gibb L, Huerta R, Rabinovich MI (2003) Biophysical model of synaptic plasticity dynamics. Biol Cybern 89:214-26 [PubMed]

Abarbanel HD, Huerta R, Rabinovich MI (2002) Dynamical model of long-term synaptic plasticity. Proc Natl Acad Sci U S A 99:10132-7 [PubMed]

Abarbanel HD, Talathi SS, Gibb L, Rabinovich MI (2005) Synaptic plasticity with discrete state synapses. Phys Rev E Stat Nonlin Soft Matter Phys 72:031914-54 [PubMed]

Achard P, De Schutter E (2008) Calcium, synaptic plasticity and intrinsic homeostasis in purkinje neuron models. Front Comput Neurosci 2:8 [PubMed]

Ajay SM, Bhalla US (2004) A role for ERKII in synaptic pattern selectivity on the time-scale of minutes. Eur J Neurosci 20:2671-80 [PubMed]

Ajay SM, Bhalla US (2006) Synaptic plasticity in vitro and in silico: insights into an intracellular signaling maze. Physiology (Bethesda) 21:289-96 [PubMed]

Ajay SM, Bhalla US (2007) A propagating ERKII switch forms zones of elevated dendritic activation correlated with plasticity. HFSP J 1:49-66 [PubMed]

Alves R, Antunes F, Salvador A (2006) Tools for kinetic modeling of biochemical networks. Nat Biotechnol 24:667-72 [PubMed]

Andrews SS, Addy NJ, Brent R, Arkin AP (2010) Detailed simulations of cell biology with Smoldyn 2.1. PLoS Comput Biol 6:e1000705-72 [PubMed]

Aslam N, Kubota Y, Wells D, Shouval HZ (2009) Translational switch for long-term maintenance of synaptic plasticity. Mol Syst Biol 5:284-72 [PubMed]

Badoual M, Zou Q, Davison AP, Rudolph M, Bal T, Fregnac Y, Destexhe A (2006) Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. Int J Neural Syst 16:79-97 [Journal] [PubMed]

   Biophysical and phenomenological models of spike-timing dependent plasticity (Badoual et al. 2006) [Model]

Bhalla US (2002) Biochemical signaling networks decode temporal patterns of synaptic input. J Comput Neurosci 13:49-62 [Journal] [PubMed]

Bhalla US (2002) Mechanisms for temporal tuning and filtering by postsynaptic signaling pathways. Biophys J 83:740-52 [PubMed]

Bhalla US (2002) Use of Kinetikit and GENESIS for modeling signaling pathways Methods in Enzymology, Hildebrandt JD:Iyengar R, ed. pp.3

Bhalla US (2009) Molecules, networks, and memory Systems Biology: The Challenge of Complexity, Nakanishi S:Kageyama R:Watanabe D, ed. pp.151

Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381-7 [PubMed]

   Emergent properties of networks of biological signaling pathways (Bhalla, Iyengar 1999) [Model]

Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464-72 [PubMed]

Bi GQ, Rubin J (2005) Timing in synaptic plasticity: from detection to integration. Trends Neurosci 28:222-8 [PubMed]

Blackwell KT, Hellgren-kotaleski J (2002) Modeling the dynamicsof second messenger pathways Neuroscience Databases, Kotter R, ed. pp.63

Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31-9 [PubMed]

Bliss TV, Gardner-Medwin AR (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol 232:357-74 [PubMed]

Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331-56 [PubMed]

Blitzer RD, Iyengar R, Landau EM (2005) Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity. Biol Psychiatry 57:113-9 [PubMed]

Bower JM, Beeman D (1998) The Book Of Genesis: Exploring Realistic Neural Models With The General Neural Simulation System

Bradshaw JM, Kubota Y, Meyer T, Schulman H (2003) An ultrasensitive Ca2+-calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling. Proc Natl Acad Sci U S A 100:10512-7 [PubMed]

Bradshaw KD, Emptage NJ, Bliss TV (2003) A role for dendritic protein synthesis in hippocampal late LTP. Eur J Neurosci 18:3150-2 [PubMed]

Brown SA, Morgan F, Watras J, Loew LM (2008) Analysis of phosphatidylinositol-4,5-bisphosphate signaling in cerebellar Purkinje spines. Biophys J 95:1795-812 [PubMed]

Brown TH, Kairiss EW, Keenan CL (1990) Hebbian synapses: biophysical mechanisms and algorithms. Annu Rev Neurosci 13:475-511 [PubMed]

Bruel-Jungerman E, Davis S, Laroche S (2007) Brain plasticity mechanisms and memory: a party of four. Neuroscientist 13:492-505 [PubMed]

Byrne MJ, Putkey JA, Waxham MN, Kubota Y (2009) Dissecting cooperative calmodulin binding to CaM kinase II: a detailed stochastic model. J Comput Neurosci 27:621-38 [PubMed]

Byrne MJ, Waxham MN, Kubota Y (2010) Cellular dynamic simulator: an event driven molecular simulation environment for cellular physiology. Neuroinformatics 8:63-82 [PubMed]

Cai Y, Gavornik JP, Cooper LN, Yeung LC, Shouval HZ (2007) Effect of stochastic synaptic and dendritic dynamics on synaptic plasticity in visual cortex and hippocampus. J Neurophysiol 97:375-86 [PubMed]

Canepari M, Vogt KE (2008) Dendritic spike saturation of endogenous calcium buffer and induction of postsynaptic cerebellar LTP. PLoS One 3:e4011-82 [PubMed]

Carnevale NT, Hines ML (2006) The NEURON Book

Castellani GC, Bazzani A, Cooper LN (2009) Toward a microscopic model of bidirectional synaptic plasticity. Proc Natl Acad Sci U S A 106:14091-5 [PubMed]

Castellani GC, Quinlan EM, Bersani F, Cooper LN, Shouval HZ (2007) A model of bidirectional synaptic plasticity: from signaling network to channel conductance. Learn Mem 12:423-32 [PubMed]

Castellani GC, Quinlan EM, Cooper LN, Shouval HZ (2001) A biophysical model of bidirectional synaptic plasticity: dependence on AMPA and NMDA receptors. Proc Natl Acad Sci U S A 98:12772-7 [PubMed]

Castellani GC, Zironi I (2010) Biophysics-based models of LTP/LTD Hippocampal Microcircuits: A Computational Modeler’s Resource Book, Cutsuridis V:Graham B:Cobb S:Vida I, ed. pp.555

Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms Neuropsychopharmacology 33:18-41

Clopath C, Busing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13:344-52 [Journal] [PubMed]

   Voltage-based STDP synapse (Clopath et al. 2010) [Model]

Clopath C, Ziegler L, Vasilaki E, Busing L, Gerstner W (2008) Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS Comput Biol 4:e1000248 [Journal] [PubMed]

   Tag Trigger Consolidation (Clopath and Ziegler et al. 2008) [Model]

Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129:1659-73 [PubMed]

Coomber C (1997) A model of associative long-term potentiation and long- term depression in a compartmental reconstruction of a neuron Neurocomputing 16:189-205

Coomber C (1998) Current theories of neuronal information processing performed by Ca2+-calmodulin-dependent protein kinase II with support and insights from computer modelling and simulation. Comput Chem 22:251-63 [PubMed]

Coomber CJ (1998) Site-selective autophosphorylation of Ca2+-calmodulin-dependent protein kinase II as a synaptic encoding mechanism. Neural Comput 10:1653-78 [PubMed]

Cornelisse LN, van Elburg RAJ, Meredith RM, Yuste R, Mansvelder HD (2007) High Speed Two-Photon Imaging of Calcium Dynamics in Dendritic Spines: Consequences for Spine Calcium Kinetics and Buffer Capacity. PLoS ONE 2(10):e1073 [Journal] [PubMed]

   Determinants of fast calcium dynamics in dendritic spines and dendrites (Cornelisse et al. 2007) [Model]

D'Alcantara P, Schiffmann SN, Swillens S (2003) Bidirectional synaptic plasticity as a consequence of interdependent Ca2+-controlled phosphorylation and dephosphorylation pathways. Eur J Neurosci 17:2521-8 [PubMed]

Dan Y, Poo MM (2006) Spike timing-dependent plasticity: from synapse to perception. Physiol Rev 86:1033-48 [PubMed]

De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J Neurophysiol 71:375-400 [Journal] [PubMed]

   Cerebellar purkinje cell (De Schutter and Bower 1994) [Model]

De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. J Neurophysiol 71:401-19 [Journal] [PubMed]

   Cerebellar purkinje cell (De Schutter and Bower 1994) [Model]

De_schutter E, Bower JM (1993) Sensitivity of synaptic plasticity to the Ca2+ permeability interactions of NMDA channels: A model of long-term potentiation in hippocampal neurons Neural Computation 51:681-694

Delord B, Berry H, Guigon E, Genet S (2007) A new principle for information storage in an enzymatic pathway model. PLoS Comput Biol 3:e124-63 [PubMed]

Doi T, Kuroda S, Michikawa T, Kawato M (2005) Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neurosci 25:950-61 [Journal] [PubMed]

   Spike timing detection in different forms of LTD (Doi et al 2005) [Model]

Dosemeci A, Albers RW (1996) A mechanism for synaptic frequency detection through autophosphorylation of CaM kinase II. Biophys J 70:2493-501 [PubMed]

Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A 89:4363-7 [PubMed]

Dupont G, Houart G, De Koninck P (2003) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations: a simple model. Cell Calcium 34:485-97 [PubMed]

Engelman MS (1978) FIDAP (A Fluid Dynamics Analysis Program) Adv Eng Softw 4:163-166

Engelman MS (1996) FIDAP Theoretical Manual, Version 7.5

Ermentrout GB (2002) Simulating, Analyzing, and Animating Dynamical System: A Guide to XPPAUT for Researchers and Students Society for Industrial and Applied Mathematics (SIAM)

Fernandez E, Schiappa R, Girault JA, Le Novère N (2006) DARPP-32 is a robust integrator of dopamine and glutamate signals. PLoS Comput Biol 2:e176-60 [PubMed]

Fiala JC, Grossberg S, Bullock D (1996) Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. J Neurosci 16:3760-74 [PubMed]

Franks KM, Bartol TM, Sejnowski TJ (2001) An MCell model of calcium dynamics and frequency-dependence of calmodulin activation in dendritic spines Neurocomputing 38:9-16

Gamble E, Koch C (1987) The dynamics of free calcium in dendritic spines in response to repetitive synaptic input. Science 236:1311-5 [PubMed]

Gerdeman GL, Lovinger DM (2003) Emerging roles for endocannabinoids in long-term synaptic plasticity. Br J Pharmacol 140:781-9 [PubMed]

Gerkin RC, Bi GQ, Rubin JE (2010) A phenomenological calcium-based model of STDP Hippocampal Microcircuits: A Computational Modeler’s Resource Book, Cutsuridis V:Graham B:Cobb S:Vida I, ed. pp.571

Gerkin RC, Lau PM, Nauen DW, Wang YT, Bi GQ (2007) Modular Competition Driven by NMDA Receptor Subtypes in Spike-Timing-Dependent Plasticity J Neurophysiol 97(4):2851-2862 [Journal] [PubMed]

   STDP and NMDAR Subunits (Gerkin et al. 2007) [Model]

Gewaltig M-O, Diesmann M (2007) NEST (Neural Simulation Tool) Scholarpedia 2:1430

Gillespie DT (1976) A General method for numerically simulating the stochastic time evolution of coupledchemical reactions J Comput Phys 22:403-434

Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. Journal Of Physical Chemistry 81:2340-2361

Gold JI, Bear MF (1994) A model of dendritic spine Ca2+ concentration exploring possible bases for a sliding synaptic modification threshold. Proc Natl Acad Sci U S A 91:3941-5 [PubMed]

Gomez C (1999) Engineering, and Scientific Computing with Scilab

Graupner M, Brunel N (2007) STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS Comput Biol 3:e221 [Journal] [PubMed]

   CaMKII system exhibiting bistability with respect to calcium (Graupner and Brunel 2007) [Model]

Graupner M, Brunel N (2010) Mechanisms of induction and maintenance of spike timing dependent plasticity in biophysical synapse models Front Comput Neurosci 4:136

Hayer A, Bhalla US (2005) Molecular switches at the synapse emerge from receptor and kinase traffic. PLoS Comput Biol 1:137-54 [PubMed]

Helias M, Rotter S, Gewaltig MO, Diesmann M (2008) Structural plasticity controlled by calcium based correlation detection. helias@bccn.uni-freiburg.de. Front Comput Neurosci 2:7 [PubMed]

Hellgren_Kotaleski J, Blackwell KT (2002) Sensitivity to interstimulus interval due to calcium interactions in the Purkinje cell spines Neurocomput 44:13-18

Hernjak N, Slepchenko BM, Fernald K, Fink CC, Fortin D, Moraru II, Watras J, Loew LM (2005) Modeling and analysis of calcium signaling events leading to long-term depression in cerebellar Purkinje cells. Biophys J 89:3790-806 [PubMed]

Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A Database to Support Computational Neuroscience. J Comput Neurosci 17:7-11 [Journal] [PubMed]

Holcman D, Schuss Z, Korkotian E (2004) Calcium dynamics in dendritic spines and spine motility. Biophys J 87:81-91 [PubMed]

Holmes WR (1990) Is the function of dendritic spines to concentrate calcium? Brain Res 519:338-42 [PubMed]

Holmes WR (2000) Models of calmodulin trapping and CaM kinase II activation in a dendritic spine. J Comput Neurosci 8:65-85 [Journal] [PubMed]

Holmes WR (2005) Calcium signaling in dendritic spines Modeling in the Neurosciences:Biological Systems to Neuromimetic Robotics, Reeke GN:Poznanski RR:Lindsay KA:Rosenberg JR:Sporns O, ed. pp.25

Holmes WR, Levy WB (1990) Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes. J Neurophysiol 63:1148-68 [Journal] [PubMed]

Holmes WR, Levy WB (1997) Quantifying the role of inhibition in associative long-term potentiation in dentate granule cells with computational models. J Neurophysiol 78:103-16 [Journal] [PubMed]

Holthoff K, Tsay D, Yuste R (2002) Calcium dynamics of spines depend on their dendritic location. Neuron 33:425-37 [PubMed]

Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI--a COmplex PAthway SImulator. Bioinformatics 22:3067-74 [PubMed]

Hudmon A, Schulman H (2002) Structure-function of the multifunctional Ca2+-calmodulin-dependent protein kinase II. Biochem J 364:593-611 [PubMed]

Hudmon A, Schulman H (2002) Neuronal CA2+-calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71:473-510 [PubMed]

Ichikawa K (2001) A-Cell: graphical user interface for the construction of biochemical reaction models. Bioinformatics 17:483-4 [PubMed]

Ichikawa K (2004) Localization of activated Ca2+-calmodulin-dependent protein kinase II within a spine: modeling and computer simulation Neurocomputing 58-63:443-448

Ichikawa K (2005) A Modeling Environment With Three-Dimensional Morphology, A-Cell-3D, and Ca2+ Dynamics in a Spine. Neuroinformatics 3:49-64 [PubMed]

Ichikawa K, Hoshino A, Kato K (2007) Induction of synaptic depression by high-frequency stimulation in area CA1 of the rat hippocampus: modeling and experimental studies Neurocomputing 70:2055-2059

Ito M (1989) Long-term depression. Annu Rev Neurosci 12:85-102 [PubMed]

Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143-95 [PubMed]

Ito M (2002) The molecular organization of cerebellar long-term depression. Nat Rev Neurosci 3:896-902 [PubMed]

Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 324:113-34 [PubMed]

Jain P, Bhalla US (2009) Signaling logic of activity-triggered dendritic protein synthesis: an mTOR gate but not a feedback switch. PLoS Comput Biol 5:e1000287-34 [PubMed]

Kötter R, Schirok D (1999) Towards an integration of biochemical and biophysical models of neuronal information processing: a case study in the nigro-striatal system. Rev Neurosci 10:247-66 [PubMed]

Kalantzis G, Shouval HZ (2009) Structural plasticity can produce metaplasticity. PLoS One 4:e8062-34 [PubMed]

Karmarkar UR, Buonomano DV (2002) A model of spike-timing dependent plasticity: one or two coincidence detectors? J Neurophysiol 88:507-13 [Journal] [PubMed]

Karmarkar UR, Najarian MT, Buonomano DV (2002) Mechanisms and significance of spike-timing dependent plasticity. Biol Cybern 87:373-82 [PubMed]

Kauderer BS, Kandel ER (2000) Capture of a protein synthesis-dependent component of long-term depression. Proc Natl Acad Sci U S A 97:13342-7 [PubMed]

Keller DX, Franks KM, Bartol TM, Sejnowski TJ (2008) Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines. PLoS One 3:e2045-7 [PubMed]

Kerr RA, Bartol TM, Kaminsky B, Dittrich M, Chang JC, Baden SB, Sejnowski TJ, Stiles JR (2008) FAST MONTE CARLO SIMULATION METHODS FOR BIOLOGICAL REACTION-DIFFUSION SYSTEMS IN SOLUTION AND ON SURFACES. SIAM J Sci Comput 30:3126-7 [PubMed]

Kikuchi S, Fujimoto K, Kitagawa N, Fuchikawa T, Abe M, Oka K, Takei K, Tomita M (2003) Kinetic simulation of signal transduction system in hippocampal long-term potentiation with dynamic modeling of protein phosphatase 2A. Neural Netw 16:1389-98 [PubMed]

Kim M, Huang T, Abel T, Blackwell KT (2010) Temporal Sensitivity of Protein Kinase A Activation in Late-Phase Long Term Potentiation PLoS Comput Biol 6(2):e1000691 [Journal]

   Hippocampus CA1: Temporal sensitivity of signaling pathways underlying LTP (Kim et al. 2010) [Model]

Kitagawa Y, Hirano T, Kawaguchi SY (2009) Prediction and validation of a mechanism to control the threshold for inhibitory synaptic plasticity. Mol Syst Biol 5:280 [PubMed]

Kitajima T, Hara K (1990) A model of the mechanisms of long-term potentiation in the hippocampus. Biol Cybern 64:33-9 [PubMed]

Kitajima T, Hara K (2000) A generalized Hebbian rule for activity-dependent synaptic modifications. Neural Netw 13:445-54 [PubMed]

Kitajima T, Hara KI (1997) An integrated model for activity-dependent synaptic modifications Neural Netw 10:413-421

Klann E, Chen SJ, Sweatt JD (1993) Mechanism of protein kinase C activation during the induction and maintenance of long-term potentiation probed using a selective peptide substrate. Proc Natl Acad Sci U S A 90:8337-41 [PubMed]

Klipp E, Liebermeister W (2006) Mathematical modeling of intracellular signaling pathways. BMC Neurosci 7 Suppl 1:S10 [PubMed]

Koch C, Zador A (1993) The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J Neurosci 13:413-22 [PubMed]

Kotaleski JH, Blackwell KT (2010) Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat Rev Neurosci 11:239-51 [PubMed]

Kotaleski JH, Lester D, Blackwell KT (2007) Subcellular interactions between parallel fibre and climbing fibre signals in Purkinje cells predict sensitivity of classical conditioning to interstimulus interval. Integr Physiol Behav Sci 37:265-92 [PubMed]

Kotter R (1994) Postsynaptic integration of glutamatergic and dopaminergic signals in the striatum. Prog Neurobiol 44:163-96 [PubMed]

Kubota S, Kitajima T (2008) A model for synaptic development regulated by NMDA receptor subunit expression. J Comput Neurosci 24:1-20 [Journal] [PubMed]

Kubota S, Kitajima T (2010) Possible role of cooperative action of NMDA receptor and GABA function in developmental plasticity. J Comput Neurosci 28:347-59 [PubMed]

Kubota Y, Bower JM (1999) Decoding time-varying calcium signals by the postsynaptic biochemical network: Computer simulation of molecular kinetics Neurocomputing 26:29-38

Kubota Y, Bower JM (2007) Transient versus asymptotic dynamics of CaM kinase II: possible roles of phosphatase. J Comput Neurosci 11:263-79 [PubMed]

Kubota Y, Putkey JA, Shouval HZ, Waxham MN (2008) IQ-motif proteins influence intracellular free Ca2+ in hippocampal neurons through their interactions with calmodulin. J Neurophysiol 99:264-76 [PubMed]

Kubota Y, Putkey JA, Waxham MN (2007) Neurogranin controls the spatiotemporal pattern of postsynaptic Ca2+-CaM signaling. Biophys J 93:3848-59 [PubMed]

Kuroda S, Schweighofer N, Kawato M (2001) Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. J Neurosci 21:5693-702 [PubMed]

Lante F, Ferreira_de_jesus MC, Guiramand J, Recasens M, Vignes M (2006) Low-frequency stimulation induces a new form of LTP, metabotropic glutamate (mGlu5) receptor- and PKA-dependent, in the CA1 area of the rat hippocampus Hippocampus 16 16:345-360

Le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, et al (2006) BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34:D689-91 [PubMed]

Li Y, Holmes WR (2000) Comparison of CaMKinase II activation in a dendritic spine computed with deterministic and stochastic models of the NMDA synaptic conductance Neurocomputing 32-33:1-7

Lindskog M, Kim M, Wikstrom MA, Blackwell KT, Kotaleski JH (2006) Transient calcium and dopamine increase PKA activity and DARPP-32 phosphorylation. PLoS Comput Biol 2:e119 [Journal] [PubMed]

   Model of DARPP-32 phosphorylation in striatal medium spiny neurons (Lindskog et al. 2006) [Model]

Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci U S A 86:9574-8 [PubMed]

Lisman J, Goldring MA (1988) Evaluation of a model of long-term memory based on the properties of the Ca2+-calmodulin-dependent protein kinase J Physiol (paris) 83:187-197

Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3:175-90 [PubMed]

Lisman JE (1985) A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc Natl Acad Sci U S A 82:3055-7 [PubMed]

Lisman JE, Goldring MA (1988) Feasibility of long-term storage of graded information by the Ca2+-calmodulin-dependent protein kinase molecules of the postsynaptic density. Proc Natl Acad Sci U S A 85:5320-4 [PubMed]

Lisman JE, Zhabotinsky AM (2001) A model of synaptic memory: a CaMKII-PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 31:191-201 [PubMed]

Lloyd CM, Lawson JR, Hunter PJ, Nielsen PF (2008) The CellML Model Repository. Bioinformatics [Journal] [PubMed]

Luciano JS, Stevens RD (2007) e-Science and biological pathway semantics BMC Bioinformatics 8(S3):S3

Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5-21 [PubMed]

Malenka RC, Nicoll RA (1999) Long-term potentiation--a decade of progress? Science 285:1870-4 [PubMed]

Malinow R, Schulman H, Tsien RW (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245:862-6 [PubMed]

Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213-5 [PubMed]

Markram H, Roth A, Helmchen F (1998) Competitive calcium binding: implications for dendritic calcium signaling. J Comput Neurosci 5:331-48 [Journal] [PubMed]

Matsushita T, Moriyama S, Fukai T (1995) Switching dynamics and the transient memory storage in a model enzyme network involving Ca2+-calmodulin-dependent protein kinase II in synapses. Biol Cybern 72:497-509 [PubMed]

Matveev V, Sherman A, Zucker RS (2002) New and corrected simulations of synaptic facilitation. Biophys J 83:1368-73 [Journal] [PubMed]

   New and corrected simulations of synaptic facilitation (Matveev et al. 2002) [Model]

Michelson S, Schulman H (1994) CaM kinase: A model for its activation and dynamics J Theor Biol 171:281-290

Migliore M, Alicata F, Ayala GF (1995) A model for long-term potentiation and depression. J Comput Neurosci 2:335-43 [PubMed]

Migliore M, Alicata F, Ayala GF (1997) Possible roles of retrograde messengers on LTP, LTD, and associative memory. Biosystems 40:127-32 [PubMed]

Migliore M, Ayala GF (1993) A kinetic model of short and long term potentiation Neural Comput 5:636-647

Migliore M, Lansky P (1999) Long-term potentiation and depression induced by a stochastic conditioning of a model synapse. Biophys J 77:1234-43 [PubMed]

   Stochastic LTP/LTD conditioning of a synapse (Migliore and Lansky 1999) [Model]

Migliore M, Lansky P (1999) Computational model of the effects of stochastic conditioning on the induction of long-term potentiation and depression. Biol Cybern 81:291-8 [PubMed]

Migliore M, Morse TM, Davison AP, Marenco L, Shepherd GM, Hines ML (2003) ModelDB: making models publicly accessible to support computational neuroscience. Neuroinformatics 1:135-9 [Journal] [PubMed]

Miller P, Wang XJ (2006) Stability of discrete memory states to stochastic fluctuations in neuronal systems. Chaos 16:026109 [PubMed]

Miller P, Zhabotinsky AM, Lisman JE, Wang XJ (2005) The stability of a stochastic CaMKII switch: dependence on the number of enzyme molecules and protein turnover. PLoS Biol 3:e107-8 [PubMed]

Morrison A, Diesmann M, Gerstner W (2008) Phenomenological models of synaptic plasticity based on spike timing. Biol Cybern 98:459-78 [PubMed]

Murzina GB (2004) Mathematical simulation of the induction of long-term depression in cerebellar Purkinje cells. Neurosci Behav Physiol 34:115-21 [PubMed]

Murzina GB, Sil'kis IG (2000) Studies of long-term potentiation and depression of inhibitory transmission by mathematical modeling of post-synaptic processes. Neurosci Behav Physiol 28:121-9 [PubMed]

Nakano T, Doi T, Yoshimoto J, Doya K (2010) A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity. PLoS Comput Biol 6:e1000670 [Journal] [PubMed]

   A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity (Nakano et al. 2010) [Model]

Naoki H, Sakumura Y, Ishii S (2005) Local signaling with molecular diffusion as a decoder of Ca2+ signals in synaptic plasticity. Mol Syst Biol 1:2005.0027-71 [PubMed]

Neher E (2006) Usefulness and limitations of linear approximations to the understanding of Ca++ signals. Cell Calcium 24:345-57 [PubMed]

Nicholls RE, Alarcon JM, Malleret G, Carroll RC, Grody M, Vronskaya S, Kandel ER (2008) Transgenic mice lacking NMDAR-dependent LTD exhibit deficits in behavioral flexibility. Neuron 58:104-17 [PubMed]

Nordlie E, Gewaltig MO, Plesser HE (2009) Towards reproducible descriptions of neuronal network models. PLoS Comput Biol 5:e1000456-14 [PubMed]

Ogasawara H, Doi T, Doya K, Kawato M (2007) Nitric oxide regulates input specificity of long-term depression and context dependence of cerebellar learning Plos Comput Biol 3:179

Ogasawara H, Doi T, Kawato M (2008) Systems biology perspectives on cerebellar long-term depression. Neurosignals 16:300-17 [PubMed]

Ogasawara H, Kawato M (2009) Computational models of cerebellar long-term memory Systems Biology: The Challenge of Complexity, Nakanishi S:Kageyama R:Watanabe D, ed. pp.169

Okamoto H, Ichikawa K (2000) A model for molecular mechanisms of synaptic competition for a finite resource. Biosystems 55:65-71 [PubMed]

Okamoto H, Ichikawa K (2000) Switching characteristics of a model for biochemical-reaction networks describing autophosphorylation versus dephosphorylation of Ca2+-calmodulin-dependent protein kinase II. Biol Cybern 82:35-47 [PubMed]

Oliveira RF, Terrin A, Di Benedetto G, Cannon RC, Koh W, Kim M, Zaccolo M, Blackwell KT (2010) The role of type 4 phosphodiesterases in generating microdomains of cAMP: large scale stochastic simulations. PLoS One 5:e11725 [PubMed]

Pepke S, Kinzer-Ursem T, Mihalas S, Kennedy MB (2010) A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+-calmodulin-dependent protein kinase II. PLoS Comput Biol 6:e1000675-71 [PubMed]

Pettinen A, Aho T, Smolander OP, Manninen T, Saarinen A, Taattola KL, Yli-Harja O, Linne ML (2005) Simulation tools for biochemical networks: evaluation of performance and usability. Bioinformatics 21:357-63 [PubMed]

Pi HJ, Lisman JE (2008) Coupled phosphatase and kinase switches produce the tristability required for long-term potentiation and long-term depression. J Neurosci 28:13132-8 [PubMed]

Qi Z, Miller GW, Voit EO (2010) The internal state of medium spiny neurons varies in response to different input signals. BMC Syst Biol 4:26-8 [PubMed]

Rackham OJL, Tsaneva-atanasova K, Ganesh A, Mellor JR (2010) A Ca2+-based computational model for NMDA receptor-dependent synaptic plasticity at individual post-synaptic spines in the hippocampus Front Syn Neurosci 2:31

Rubin JE, Gerkin RC, Bi GQ, Chow CC (2005) Calcium time course as a signal for spike-timing-dependent plasticity. J Neurophysiol 93:2600-13 [Journal] [PubMed]

Saftenku EE (2002) A simplified model of long-term plasticity in cerebellar mossy fiber-granule cell synapses. Neurophysiology/Neirofiziologiya 34:216-218 [Journal]

   LTP in cerebellar mossy fiber-granule cell synapses (Saftenku 2002) [Model]

Santamaria F, Gonzalez J, Augustine GJ, Raghavachari S (2010) Quantifying the effects of elastic collisions and non-covalent binding on glutamate receptor trafficking in the post-synaptic density. PLoS Comput Biol 6:e1000780-8 [PubMed]

Santos SD, Carvalho AL, Caldeira MV, Duarte CB (2009) Regulation of AMPA receptors and synaptic plasticity. Neuroscience 158:105-25 [PubMed]

Santucci DM, Raghavachari S (2008) The effects of NR2 subunit-dependent NMDA receptor kinetics on synaptic transmission and CaMKII activation. PLoS Comput Biol 4:e1000208-25 [PubMed]

Saudargiene A, Porr B, Worgotter F (2005) Synaptic modifications depend on synapse location and activity: a biophysical model of STDP. Biosystems 79:3-10

Schaff J, Fink CC, Slepchenko B, Carson JH, Loew LM (1997) A general computational framework for modeling cellular structure and function. Biophys J 73:1135-46 [PubMed]

Schiegg A, Gerstner W, Ritz R, van Hemmen JL (1995) Intracellular Ca2+ stores can account for the time course of LTP induction: a model of Ca2+ dynamics in dendritic spines. J Neurophysiol 74:1046-55 [Journal] [PubMed]

Schmidt H, Eilers J (2009) Spine neck geometry determines spino-dendritic cross-talk in the presence of mobile endogenous calcium binding proteins. J Comput Neurosci 27:229-43 [PubMed]

Schmidt H, Kunerth S, Wilms C, Strotmann R, Eilers J (2007) Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins. J Physiol 581:619-29 [PubMed]

Serrano P, Yao Y, Sacktor TC (2005) Persistent phosphorylation by protein kinase Mzeta maintains late-phase long-term potentiation. J Neurosci 25:1979-84 [PubMed]

Shah NT, Yeung LC, Cooper LN, Cai Y, Shouval HZ (2006) A biophysical basis for the inter-spike interaction of spike-timing-dependent plasticity. Biol Cybern 95:113-21 [PubMed]

Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci U S A 99:10831-6 [PubMed]

Shouval HZ, Castellani GC, Blais BS, Yeung LC, Cooper LN (2002) Converging evidence for a simplified biophysical model of synaptic plasticity. Biol Cybern 87:383-91 [PubMed]

Shouval HZ, Kalantzis G (2005) Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. J Neurophysiol 93:1069-73 [Journal] [PubMed]

Shouval HZ, Wang SS, Wittenberg GM (2010) Spike timing dependent plasticity: a consequence of more fundamental learning rules Front Comput Neurosci 4:19

Sivakumaran S, Hariharaputran S, Mishra J, Bhalla US (2003) The Database of Quantitative Cellular Signaling: management and analysis of chemical kinetic models of signaling networks. Bioinformatics 19:408-15 [PubMed]

Slepchenko BM, Schaff JC, Macara I, Loew LM (2003) Quantitative cell biology with the Virtual Cell. Trends Cell Biol 13:570-6 [PubMed]

Smolen P (2007) A model of late long-term potentiation simulates aspects of memory maintenance. PLoS One 2:e445-6 [PubMed]

Smolen P, Baxter DA, Byrne JH (2006) A model of the roles of essential kinases in the induction and expression of late long-term potentiation. Biophys J 90:2760-75 [Journal] [PubMed]

   Roles of essential kinases in induction of late hippocampal LTP (Smolen et al., 2006) [Model]

Smolen P, Baxter DA, Byrne JH (2008) Bistable MAP kinase activity: a plausible mechanism contributing to maintenance of late long-term potentiation. Am J Physiol Cell Physiol 294:C503-15 [PubMed]

Smolen P, Baxter DA, Byrne JH (2009) Interlinked dual-time feedback loops can enhance robustness to stochasticity and persistence of memory Phys Rev E 79:031902

Soderling TR, Derkach VA (2000) Postsynaptic protein phosphorylation and LTP. Trends Neurosci 23:75-80 [PubMed]

Stefan MI, Edelstein SJ, Le Novère N (2008) An allosteric model of calmodulin explains differential activation of PP2B and CaMKII. Proc Natl Acad Sci U S A 105:10768-73 [PubMed]

Steuber V, Willshaw D (2004) A biophysical model of synaptic delay learning and temporal pattern recognition in a cerebellar Purkinje cell. J Comput Neurosci 17:149-64 [Journal] [PubMed]

Stiles JR, Bartol TM (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell Computational Neuroscience: Realistic Modelling for Experimentalists, DeSchutter E, ed. pp.87

Sweatt JD (2007) Toward a molecular explanation for long-term potentiation. Learn Mem 6:399-416 [PubMed]

Tanaka K, Augustine GJ (2009) Systems biology meets single-cell physiology: role of a positive-feedback signal transduction network in cerebellar long-term synaptic depression Systems Biology: The Challenge of Complexity, Nakanishi S:Kageyama R:Watanabe D, ed. pp.159

Tanaka K, Khiroug L, Santamaria F, Doi T, Ogasawara H, Ellis-Davies GC, Kawato M, Augustine G (2007) Ca2+ requirements for cerebellar long-term synaptic depression: role for a postsynaptic leaky integrator. Neuron 54:787-800 [PubMed]

Tolle DP, Le Novère N (2010) Brownian diffusion of AMPA receptors is sufficient to explain fast onset of LTP. BMC Syst Biol 4:25-800 [PubMed]

Tolle DP, Le Novère N (2010) Meredys, a multi-compartment reaction-diffusion simulator using multistate realistic molecular complexes. BMC Syst Biol 4:24-800 [PubMed]

Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yu (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15:72-84 [PubMed]

Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635-50 [Journal] [PubMed]

Urakubo H, Honda M, Froemke RC, Kuroda S (2008) Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity. J Neurosci 28:3310-23 [Journal] [PubMed]

   An allosteric kinetics of NMDARs in STDP (Urakubo et al. 2008) [Model]

Urakubo H, Honda M, Tanaka K, Kuroda S (2009) Experimental and computational aspects of signaling mechanisms of spike-timing-dependent plasticity. HFSP J 3:240-54 [PubMed]

Volfovsky N, Parnas H, Segal M, Korkotian E (1999) Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments. J Neurophysiol 82:450-62 [PubMed]

Wang H, Hu Y, Tsien JZ (2006) Molecular and systems mechanisms of memory consolidation and storage. Prog Neurobiol 79:123-35 [PubMed]

Wils S, De_schutter E (2009) STEPS: modeling and simulating complex reaction-diffusion systems with Python Front Neuroinform 3:15

Woo NH, Duffy SN, Abel T, Nguyen PV (2003) Temporal spacing of synaptic stimulation critically modulates the dependence of LTP on cyclic AMP-dependent protein kinase. Hippocampus 13:293-300 [PubMed]

Worgotter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17:245-319 [PubMed]

Yang KH, Hellgren_kotaleski J, Blackwell KT (2001) The role of protein kinase C in the biochemical pathways of classical conditioning Neurocomputing 38-40:79-85

Yeung LC, Shouval HZ, Blais BS, Cooper LN (2004) Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Proc Natl Acad Sci U S A 101:14943-8 [PubMed]

Yu X, Shouval HZ, Knierim JJ (2008) A biophysical model of synaptic plasticity and metaplasticity can account for the dynamics of the backward shift of hippocampal place fields. J Neurophysiol 100:983-92 [Journal] [PubMed]

Zador A, Koch C, Brown TH (1990) Biophysical model of a Hebbian synapse. Proc Natl Acad Sci U S A 87:6718-22 [PubMed]

Zhabotinsky AM (2000) Bistability in the Ca(2+)-calmodulin-dependent protein kinase-phosphatase system. Biophys J 79:2211-21 [PubMed]

Zhabotinsky AM, Camp RN, Epstein IR, Lisman JE (2006) Role of the neurogranin concentrated in spines in the induction of long-term potentiation. J Neurosci 26:7337-47 [PubMed]

Zou Q, Destexhe A (2007) Kinetic models of spike-timing dependent plasticity and their functional consequences in detecting correlations. Biol Cybern 97:81-97 [PubMed]

Manninen T, Havela R, Linne ML (2017) Reproducibility and comparability of computational models for astrocyte calcium excitability Front. Neuroinform. [Journal]

   Reproducibility and comparability of models for astrocyte Ca2+ excitability (Manninen et al 2017) [Model]
   Glutamate-evoked Ca2+ oscillations in single astrocytes (De Pitta et al. 2009) (Manninen et al 2017) [Model]
   Ca2+ oscillations in single astrocytes (Lavrentovich and Hemkin 2008) (python) (Manninen et al 2017) [Model]
   Glutamate-evoked Ca2+ oscillations in single astrocytes (Modified from Dupont et al. 2011) [Model]
   Spontaneous calcium oscillations in single astrocytes (Riera et al. 2011) (Manninen et al 2017) [Model]

(218 refs)