Citation Relationships



Miura K, Okada M, Amari S (2006) Estimating spiking irregularities under changing environments. Neural Comput 18:2359-86 [PubMed]

References and models cited by this paper

References and models that cite this paper

Amari S (1982) Differential geometry of curved exponential families-curvatures and information loss Ann Stat 10:357-385

Amari S (1987) Dual connections on the Hilbert bundles of statistical models Geometrization of statistical theory, Dodson CTJ, ed.

Amari S (1998) Natural gradient works efficiently in learning Neural Comput 10:251-276

Amari S, Kumon M (1988) Estimation in the presence of infinitely many nuisance parameters geometry of estimating functions Ann Stat 16:1044-1068

Amari S, Kurata K, Nagaoka H (1992) Information geometry of Boltzmann machines. IEEE Trans Neural Netw 3:260-71 [Journal] [PubMed]

Amari S, Nagaoka H (2001) Methods of information geometry

Amari SI (1985) Differential-geometrical methods in statistics

Amari SI, Kawanabe M (1997) Information geometry of estimating functions in semiparametric statistical models Bernoulli 1:29-54

Baker SN, Lemon RN (2000) Precise spatiotemporal repeating patterns in monkey primary and supplementary motor areas occur at chance levels. J Neurophysiol 84:1770-80 [Journal] [PubMed]

Bickel PJ, Klaassen CAJ, Ritov Y, Wellner JA (1993) Efficient and adaptive estimation for semiparametric models

Brown EN, Barbieri R, Ventura V, Kass RE, Frank LM (2002) The time-rescaling theorem and its application to neural spike train data analysis. Neural Comput 14:325-46 [Journal] [PubMed]

Cox DR, Lewis PAW (1966) The statistical analysis of series of events

Godambe VP (1960) An optimum property of regular maximum likelihood estimation Ann Math Stat 31:1208-1211

Godambe VP (1976) Conditional likelihood and unconditional optimum estimating equations Biometrika 63:277-284

Godambe VP (1991) Estimating functions

Groeneboom P, Wellner JA (1992) Information bounds and nonparametric maximum likelihood estimation

Havil J (2003) Gamma: Exploring Eulers constant

Holt GR, Softky WR, Koch C, Douglas RJ (1996) Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J Neurophysiol 75:1806-14 [Journal] [PubMed]

Ikeda K (2005) Information geometry of interspike intervals in spiking neurons. Neural Comput 17:2719-35 [Journal] [PubMed]

Mukhopadhyay P (2004) An introduction to estimating functions

Murray MK, Rice JW (1993) Differential geometry and statistics

Neyman J, Scott EL (1948) Consistent estimates based on partially consistent observations. Econometrica 32:1-32

Pfanzagl J (1990) Estimation in semiparametric models

Reich DS, Victor JD, Knight BW (1998) The power ratio and the interval map: spiking models and extracellular recordings. J Neurosci 18:10090-104 [PubMed]

Ritov Y, Bickel PJ (1990) Achieving information bounds in non and semiparametric models Ann Stat 18:925-938

Sakai Y, Funahashi S, Shinomoto S (1999) Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons. Neural Netw 12:1181-1190 [PubMed]

Shinomoto S, Miura K, Koyama S (2005) A measure of local variation of inter-spike intervals. Biosystems 79:67-72 [Journal] [PubMed]

Shinomoto S, Miyazaki Y, Tamura H, Fujita I (2005) Regional and laminar differences in in vivo firing patterns of primate cortical neurons. J Neurophysiol 94:567-75 [Journal] [PubMed]

Shinomoto S, Shima K, Tanji J (2003) Differences in spiking patterns among cortical neurons. Neural Comput 15:2823-42 [Journal] [PubMed]

Tuckwell HC (1988) Introduction to Theoretical Neurobiology. Volume 2: Nonlinear and Stochastic Theories

van_derVaart A (1998) Asymptotic statistics

(31 refs)