Citation Relationships

Li M, Clark JJ (2004) A temporal stability approach to position and attention-shift-invariant recognition. Neural Comput 16:2293-321 [PubMed]

References and models cited by this paper

References and models that cite this paper

Bartlett SM, Sejnowski TJ (1998) Learning viewpoint invariant face representations from visual experience by temporal association Face Recognition: From theory to applications, Wechsler H:Phillips PJ:Burce V:Fogelman-Soulie S:Huang T, ed. pp.381

Becker S (1993) Learning to categorize objects using temporal coherence Advances In Neural Information Processing Systems, Giles CL:Hanson SJ:Cowan JD, ed. pp.361

Becker S (1999) Implicit learning in 3D object recognition: the importance of temporal context. Neural Comput 11:347-74 [PubMed]

Bridgeman B, van_der_Hejiden AHC, Velichkovsky BM (1994) A theory of visual stability across saccadic eye movements Behav Brain Sci 17:247-292

Chance FS, Nelson SB, Abbott LF (2000) A recurrent network model for the phase invariance of complex cell responses Neurocomputing 32:339-344

Clark JJ, ORegan JK (2000) A temporal-difference learning model for perceptual stability in color vision Proc 15th Intl Conf Pattern Recognition 2:503-506

Desimone R (1990) Complexity at the neuronal level (commentary on Vision and complexity by J. K. Tsotsos) Behav Brain Sci 13:446

Deubel H, Bridgeman B, Schneider WX (1998) Immediate post-saccadic information mediates space constancy. Vision Res 38:3147-59 [PubMed]

Einhäuser W, Kayser C, König P, Körding KP (2002) Learning the invariance properties of complex cells from their responses to natural stimuli. Eur J Neurosci 15:475-86 [PubMed]

Foldiak P (1991) Learning invariance from transformation sequences Neural Comput 3:194-200

Fukushima K (1980) Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36:193-202 [PubMed]

Gross CG, Mishkin M (1977) The neural basis of stimulus equivalence across retinal translation Lateralization in the nervous system, Harnad S:Doty R:Jaynes J:Goldstein L:Krauthamer G, ed. pp.109

HUBEL DH, WIESEL TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 160:106-54 [PubMed]

Hyvärinen A, Hoyer PO (2001) A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Res 41:2413-23 [PubMed]

Ito M, Tamura H, Fujita I, Tanaka K (1995) Size and position invariance of neuronal responses in monkey inferotemporal cortex. J Neurophysiol 73:218-26 [Journal] [PubMed]

Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention forrapid screen analysis IEEE Trans Patt Anal Mach Intell 20:1254-1259

Kikuchi M, Fukushima K (2001) Invariant pattern recognition with eye movement: A neural network model Neurocomputing 38:1359-1365

Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol 4:219-27 [PubMed]

Körding KP, König P (2001) Neurons with two sites of synaptic integration learn invariant representations. Neural Comput 13:2823-49 [Journal] [PubMed]

Leopold DA, Logothetis NK (1998) Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex. Exp Brain Res 123:341-5 [PubMed]

Li M, Clark JJ (2002) Sensorimotor learning and the development of position invariance Poster session presented at the 2002 Neural Information and Coding Workshop, Les Houches, France

Maunsell JH, Cook EP (2002) The role of attention in visual processing. Philos Trans R Soc Lond B Biol Sci 357:1063-72 [Journal] [PubMed]

Miyashita Y (1988) Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335:817-20 [Journal] [PubMed]

Norman J (2002) Two visual systems and two theories of perception: An attempt to reconcile the constructivist and ecological approaches. Behav Brain Sci 25:73-96; discussion 96-144 [PubMed]

O'Regan JK, Noë A (2001) A sensorimotor account of vision and visual consciousness. Behav Brain Sci 24:939-73; discussion 973-1031 [PubMed]

Olshausen BA, Anderson CH, Van Essen DC (1993) A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J Neurosci 13:4700-19 [PubMed]

Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607-9 [Journal] [PubMed]

Olshausen BA, Field DJ (1997) Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Res 37:3311-25 [PubMed]

Perrett DI, Rolls ET, Caan W (1982) Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res 47:329-42 [PubMed]

Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019-25 [Journal] [PubMed]

Rolls ET (1995) Learning mechanisms in the temporal lobe visual cortex. Behav Brain Res 66:177-85 [PubMed]

Rolls ET (2000) Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition. Neuron 27:205-18 [PubMed]

Salinas E, Sejnowski TJ (2001) Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7:430-40 [Journal] [PubMed]

Shewchuk JR (1994) An introduction to the conjugate gradient method without the agonizing pain Tech Rep CMU-CS-94-125, Carnegie Mellon University School of Computer Science

Sutton RS, Barto AG (1981) Toward a modern theory of adaptive networks: expectation and prediction. Psychol Rev 88:135-70 [PubMed]

Wallis G, Rolls ET (1997) Invariant face and object recognition in the visual system. Prog Neurobiol 51:167-94 [PubMed]

Wallis G, Rolls ET, Foldiak P (1993) Learning invariant responses tothe natural transformations of objects Intl Joint Conf Neural Networks 2:1087-1090

Walsh V, Kulikowski JJ (1998) Perceptual constancy: Why things look as they do, Walsh V:Kulikowski JJ, ed.

(38 refs)