Citation Relationships



Theis FJ (2004) A new concept for separability problems in blind source separation. Neural Comput 16:1827-50 [PubMed]

References and models cited by this paper

References and models that cite this paper

Babaie-zadeh M, Jutten C, Nayebi K (2002) A geometric approach for separating post non-linear mixtures Proc Int Workshop EUSIPCO :11-14

Bauer H (1996) Probability theory

Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129-59 [PubMed]

Belouchrani A, Karim AM, Cardoso JF, Moulines E (1997) A blind source separation technique using second-order statistics IEEE Trans Signal Processing 45:434-443

Cardoso JF, Souloumiac A (1993) Blind beamforming for non-gaussian signals Proc IEEE 140:362-370

Cichocki A, Amari S (2003) Adaptive blind signal and image processing: Learning algorithms and applications

Comon P (1994) Independent component analysis, a new concept? Signal Processing 36:287-314

Darmois G (1953) Analyse generale des liaisons stochastiques Rev Inst Internationale Statist 21:2-8

Eriksson J, Koivunen V (2003) Identifiability and separability of linear ica models revisited Proc ICA :23-27

Habl M, Bauer C, Puntonet C, Rodriguez-alvarez M, Lang E (2001) Analyzing biomedical signals with probabilistic ICA and kernel-based source density estimation Information science innovations, Sebaaly M, ed. pp.219

Herault J, Jutten C (1986) Space or time adaptive signal processing by neural network models Neural Networks for computing: Proc AIP Conf, Denker J, ed. pp.206

Hyvarinen A, Karunen J, Oja E (2001) Independent component analysis

Hyvarinen A, Oja E (1997) A fast fixed-point algorithm for independent component analysis Neural Comput 9:1483-1492

Hyvärinen A, Pajunen P (1999) Nonlinear independent component analysis: Existence and uniqueness results. Neural Netw 12:429-439 [PubMed]

Kagan A (1986) New classes of dependent random variables and a generalization of the Darmois-Skitovitch theorem to several forms Theory Probab Appl 33:286-295

Lee TW, Lewicki MS (2000) The generalized gaussian mixture model using ICA Proc. International Workshop on Independent Component Analysis :239-244

Lin J (1998) Factorizing multivariate function classes Advances in neural information processing systems, Kearns M:Jordan M:Solla S, ed. pp.563

Skitovitch V (1953) On a property of the normal distribution DAN SSR 89:217-219

Taleb A, Jutten C (1999) Source separation in post-nonlinear mixtures IEEE Transaction On Signal Processing 47:2807-2820

Theis F, Gruber P (2004) Separability of analytic postnonlinear blind source separation with bounded sources Proc ESANN

Theis F, Puntonet C, Lang E (2003) Nonlinear geometric ICA Proc ICA :275-280

Theis FJ, Jung A, Puntonet CG, Lang EW (2003) Linear geometric ICA: fundamentals and algorithms. Neural Comput 15:419-39 [Journal] [PubMed]

Tong L, Liu R, Soon VC, Huang YF (1991) Indeterminacy and identifiability of blind identification IEEE Trans On Circuits And Systems 38:499-509

Yeredor A (2000) Blind source separation via the second characteristic function Signal Processing 80:897-902

(24 refs)