References and models cited by this paper | References and models that cite this paper | |||||||||||
Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1:195-230 [PubMed]
Graham BP, Wong AYC, Forsythe ID (2001) A computational model of synaptic transmission at the calyx of Held Neurocomputing 38:37-42 [Journal]
Lin X, Hant J (2001) Computer-simulation studies on roles of potassium currents in neurotransmission of the auditory nerve. Hear Res 152:90-9 [PubMed] Manis PB, Campagnola L (2018) A biophysical modelling platform of the cochlear nucleus and other auditory circuits: From channels to networks. Hear Res 360:76-91 [Journal] [PubMed]
Postlethwaite M, Hennig MH, Steinert JR, Graham BP, Forsythe ID (2007) Acceleration of AMPA receptor kinetics underlies temperature-dependent changes in synaptic strength at the rat calyx of Held. J Physiol 579:69-84 [PubMed]
Spirou GA, Rager J, Manis PB (2005) Convergence of auditory-nerve fiber projections onto globular bushy cells. Neuroscience 136:843-63 [Journal] [PubMed] Svirskis G, Kotak V, Sanes DH, Rinzel J (2002) Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons. J Neurosci 22:11019-25 [PubMed] Wong AY, Graham BP, Billups B, Forsythe ID (2003) Distinguishing between presynaptic and postsynaptic mechanisms of short-term depression during action potential trains. J Neurosci 23:4868-77 [PubMed] |