References and models cited by this paper | References and models that cite this paper | |||||||||||||||
Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381-7 [PubMed]
Destexhe A, Sejnowski TJ (2003) Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol Rev 83:1401-53 [Journal] [PubMed] Helfer P, Shultz TR (2018) Coupled feedback loops maintain synaptic long-term potentiation: A computational model arXiv [Journal]
Helfer P, Shultz TR (2018) Coupled feedback loops maintain synaptic long-term potentiation: A computational model of PKMzeta synthesis and AMPA receptor trafficking. PLoS Comput Biol 14:e1006147 [Journal] [PubMed]
Kim M, Huang T, Abel T, Blackwell KT (2010) Temporal sensitivity of protein kinase a activation in late-phase long term potentiation. PLoS Comput Biol 6:e1000691 [Journal] [PubMed]
Kim M, Park AJ, Havekes R, Chay A, Guercio LA, Oliveira RF, Abel T, Blackwell KT (2011) Colocalization of protein kinase A with adenylyl cyclase enhances protein kinase A activity during induction of long-lasting long-term-potentiation. PLoS Comput Biol 7:e1002084 [Journal] [PubMed]
Luczak V, Blackwell KT, Abel T, Girault JA, Gervasi N (2017) Dendritic diameter influences the rate and magnitude of hippocampal cAMP and PKA transients during ß-adrenergic receptor activation. Neurobiol Learn Mem 138:10-20 [Journal] [PubMed]
Sejnowski TJ, Destexhe A (2000) Why do we sleep? Brain Res 886:208-223 [PubMed] Smolen P, Baxter DA, Byrne JH (2006) A model of the roles of essential kinases in the induction and expression of late long-term potentiation. Biophys J 90:2760-75 [Journal] [PubMed]
|