Citation Relationships

Tikidji-Hamburyan RA, El-Ghazawi TA, Triplett JW (2016) Novel Models of Visual Topographic Map Alignment in the Superior Colliculus. PLoS Comput Biol 12:e1005315 [PubMed]

   Models of visual topographic map alignment in the Superior Colliculus (Tikidji-Hamburyan et al 2016)

References and models cited by this paper

References and models that cite this paper

Ackman JB, Burbridge TJ, Crair MC (2012) Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490:219-25 [Journal] [PubMed]

Burbridge TJ, Xu HP, Ackman JB, Ge X, Zhang Y, Ye MJ, Zhou ZJ, Xu J, Contractor A, Crair MC (2014) Visual circuit development requires patterned activity mediated by retinal acetylcholine receptors. Neuron 84:1049-64 [Journal] [PubMed]

Cang J, Feldheim DA (2013) Developmental mechanisms of topographic map formation and alignment. Annu Rev Neurosci 36:51-77 [Journal] [PubMed]

Cang J, Rentería RC, Kaneko M, Liu X, Copenhagen DR, Stryker MP (2005) Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48:797-809 [Journal] [PubMed]

Cang J, Wang L, Stryker MP, Feldheim DA (2008) Roles of ephrin-as and structured activity in the development of functional maps in the superior colliculus. J Neurosci 28:11015-23 [Journal] [PubMed]

Chandrasekaran AR, Plas DT, Gonzalez E, Crair MC (2005) Evidence for an instructive role of retinal activity in retinotopic map refinement in the superior colliculus of the mouse. J Neurosci 25:6929-38 [Journal] [PubMed]

Chaplin TA, Yu HH, Rosa MG (2013) Representation of the visual field in the primary visual area of the marmoset monkey: magnification factors, point-image size, and proportionality to retinal ganglion cell density. J Comp Neurol 521:1001-19 [Journal] [PubMed]

Dräger UC, Olsen JF (1981) Ganglion cell distribution in the retina of the mouse. Invest Ophthalmol Vis Sci 20:285-93 [PubMed]

Feinberg EH, Meister M (2015) Orientation columns in the mouse superior colliculus. Nature 519:229-32 [Journal] [PubMed]

Feldheim DA, Kim YI, Bergemann AD, Frisén J, Barbacid M, Flanagan JG (2000) Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron 25:563-74 [PubMed]

Feldheim DA, O'Leary DD (2010) Visual map development: bidirectional signaling, bifunctional guidance molecules, and competition. Cold Spring Harb Perspect Biol 2:a001768 [Journal] [PubMed]

Frisén J, Yates PA, McLaughlin T, Friedman GC, O'Leary DD, Barbacid M (1998) Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron 20:235-43 [PubMed]

Garrett ME, Nauhaus I, Marshel JH, Callaway EM (2014) Topography and areal organization of mouse visual cortex. J Neurosci 34:12587-600 [Journal] [PubMed]

Godement P, Salaün J, Imbert M (1984) Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J Comp Neurol 230:552-75 [Journal] [PubMed]

Godfrey KB, Swindale NV (2014) Modeling development in retinal afferents: retinotopy, segregation, and ephrinA/EphA mutants. PLoS One 9:e104670 [Journal] [PubMed]

Goodhill GJ (2007) Contributions of theoretical modeling to the understanding of neural map development. Neuron 56:301-11 [Journal] [PubMed]

Grimbert F, Cang J (2012) New model of retinocollicular mapping predicts the mechanisms of axonal competition and explains the role of reverse molecular signaling during development. J Neurosci 32:9755-68 [Journal] [PubMed]

Hebb DO (1949) The Organization Of Behavior

Hindges R, McLaughlin T, Genoud N, Henkemeyer M, O'Leary D (2002) EphB forward signaling controls directional branch extension and arborization required for dorsal-ventral retinotopic mapping. Neuron 35:475-87 [PubMed]

Hjorth JJ, Sterratt DC, Cutts CS, Willshaw DJ, Eglen SJ (2015) Quantitative assessment of computational models for retinotopic map formation. Dev Neurobiol 75:641-66 [Journal] [PubMed]

   Quantitative assessment of computational models for retinotopic map formation (Hjorth et al. 2015) [Model]

Kerschensteiner D, Wong RO (2008) A precisely timed asynchronous pattern of ON and OFF retinal ganglion cell activity during propagation of retinal waves. Neuron 58:851-8 [Journal] [PubMed]

Koulakov AA, Tsigankov DN (2004) A stochastic model for retinocollicular map development. BMC Neurosci 5:30 [Journal] [PubMed]

Krauzlis RJ, Lovejoy LP, Zénon A (2013) Superior colliculus and visual spatial attention. Annu Rev Neurosci 36:165-82 [Journal] [PubMed]

Lim YS, McLaughlin T, Sung TC, Santiago A, Lee KF, O'Leary DD (2008) p75(NTR) mediates ephrin-A reverse signaling required for axon repulsion and mapping. Neuron 59:746-58 [Journal] [PubMed]

Luo L, Flanagan JG (2007) Development of continuous and discrete neural maps. Neuron 56:284-300 [Journal] [PubMed]

Lyckman AW, Jhaveri S, Feldheim DA, Vanderhaeghen P, Flanagan JG, Sur M (2001) Enhanced plasticity of retinothalamic projections in an ephrin-A2/A5 double mutant. J Neurosci 21:7684-90 [PubMed]

Marler KJ, Becker-Barroso E, Martínez A, Llovera M, Wentzel C, Poopalasundaram S, Hindges R, Soriano E, Comella J, Drescher U (2008) A TrkB/EphrinA interaction controls retinal axon branching and synaptogenesis. J Neurosci 28:12700-12 [Journal] [PubMed]

May PJ (2006) The mammalian superior colliculus: laminar structure and connections. Prog Brain Res 151:321-78 [Journal] [PubMed]

McCance RA (1990) Proceedings of the Royal Society of London. Series B--Biological Sciences, Volume 119, 1935-1936: Experimental sodium chloride deficiency in man. Nutr Rev 48:145-7 [Journal] [PubMed]

McLaughlin T, Torborg CL, Feller MB, O'Leary DD (2003) Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40:1147-60 [PubMed]

Miller B, Chou L, Finlay BL (1993) The early development of thalamocortical and corticothalamic projections. J Comp Neurol 335:16-41 [Journal] [PubMed]

Nauhaus I, Nielsen KJ, Callaway EM (2016) Efficient Receptive Field Tiling in Primate V1. Neuron 91:893-904 [Journal] [PubMed]

Owens MT, Feldheim DA, Stryker MP, Triplett JW (2015) Stochastic Interaction between Neural Activity and Molecular Cues in the Formation of Topographic Maps. Neuron 87:1261-1273 [Journal] [PubMed]

Phillips MA, Colonnese MT, Goldberg J, Lewis LD, Brown EN, Constantine-Paton M (2011) A synaptic strategy for consolidation of convergent visuotopic maps. Neuron 71:710-24 [Journal] [PubMed]

Phongphanphanee P, Marino RA, Kaneda K, Yanagawa Y, Munoz DP, Isa T (2014) Distinct local circuit properties of the superficial and intermediate layers of the rodent superior colliculus. Eur J Neurosci 40:2329-43 [Journal] [PubMed]

Phongphanphanee P, Mizuno F, Lee PH, Yanagawa Y, Isa T, Hall WC (2011) A circuit model for saccadic suppression in the superior colliculus. J Neurosci 31:1949-54 [Journal] [PubMed]

Plas DT, Dhande OS, Lopez JE, Murali D, Thaller C, Henkemeyer M, Furuta Y, Overbeek P, Crair MC (2008) Bone morphogenetic proteins, eye patterning, and retinocollicular map formation in the mouse. J Neurosci 28:7057-67 [Journal] [PubMed]

Plummer KL, Behan M (1993) Development of corticotectal synaptic terminals in the cat: a quantitative electron microscopic analysis. J Comp Neurol 338:458-74 [Journal] [PubMed]

Schmitt AM, Shi J, Wolf AM, Lu CC, King LA, Zou Y (2006) Wnt-Ryk signalling mediates medial-lateral retinotectal topographic mapping. Nature 439:31-7 [Journal] [PubMed]

Shi J, Aamodt SM, Constantine-Paton M (1997) Temporal correlations between functional and molecular changes in NMDA receptors and GABA neurotransmission in the superior colliculus. J Neurosci 17:6264-76 [PubMed]

Silverman BW (1986) Density Estimation for Statistics and Data Analysis, Monographs on Statistics and Applied Probability

Simon DK, O'Leary DD (1992) Development of topographic order in the mammalian retinocollicular projection. J Neurosci 12:1212-32 [PubMed]

Stafford BK, Sher A, Litke AM, Feldheim DA (2009) Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections. Neuron 64:200-12 [Journal] [PubMed]

Stein BE, Stanford TR (2008) Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 9:255-66 [Journal] [PubMed]

Strogatz SH (2014) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering

Triplett JW, Owens MT, Yamada J, Lemke G, Cang J, Stryker MP, Feldheim DA (2009) Retinal input instructs alignment of visual topographic maps. Cell 139:175-85 [Journal] [PubMed]

Triplett JW, Pfeiffenberger C, Yamada J, Stafford BK, Sweeney NT, Litke AM, Sher A, Koulakov AA, Feldheim DA (2011) Competition is a driving force in topographic mapping. Proc Natl Acad Sci U S A 108:19060-5 [Journal] [PubMed]

Triplett JW, Wei W, Gonzalez C, Sweeney NT, Huberman AD, Feller MB, Feldheim DA (2014) Dendritic and axonal targeting patterns of a genetically-specified class of retinal ganglion cells that participate in image-forming circuits. Neural Dev 9:2 [Journal] [PubMed]

Tsigankov D, Koulakov AA (2010) Sperry versus Hebb: topographic mapping in Isl2/EphA3 mutant mice. BMC Neurosci 11:155 [Journal] [PubMed]

Tsigankov DN, Koulakov AA (2006) A unifying model for activity-dependent and activity-independent mechanisms predicts complete structure of topographic maps in ephrin-A deficient mice. J Comput Neurosci 21:101-14 [Journal] [PubMed]

Tusa RJ, Palmer LA, Rosenquist AC (1978) The retinotopic organization of area 17 (striate cortex) in the cat. J Comp Neurol 177:213-35 [Journal] [PubMed]

Van Essen DC, Newsome WT, Maunsell JH (1984) The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res 24:429-48 [PubMed]

Wang L, Sarnaik R, Rangarajan K, Liu X, Cang J (2010) Visual receptive field properties of neurons in the superficial superior colliculus of the mouse. J Neurosci 30:16573-84 [Journal] [PubMed]

Wang Q, Burkhalter A (2013) Stream-related preferences of inputs to the superior colliculus from areas of dorsal and ventral streams of mouse visual cortex. J Neurosci 33:1696-705 [Journal] [PubMed]

Whitelaw VA, Cowan JD (1981) Specificity and plasticity of retinotectal connections: a computational model. J Neurosci 1:1369-87 [PubMed]

Willshaw D (2006) Analysis of mouse EphA knockins and knockouts suggests that retinal axons programme target cells to form ordered retinotopic maps. Development 133:2705-17 [Journal] [PubMed]

Wurtz RH, Albano JE (1980) Visual-motor function of the primate superior colliculus. Annu Rev Neurosci 3:189-226 [Journal] [PubMed]

Tikidji-Hamburyan RA, Narayana V, Bozkus Z, El-Ghazawi TA (2017) Software for Brain Network Simulations: A Comparative Study Front. Neuroinform. [Journal]

   Brain networks simulators - a comparative study (Tikidji-Hamburyan et al 2017) [Model]

(58 refs)