Citation Relationships

Verhulst S, Altoè A, Vasilkov V (2018) Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hear Res 360:55-75 [PubMed]

   Human auditory periphery model: cochlea, IHC-AN, auditory brainstem responses (Verhulst et al 2018)

References and models cited by this paper

References and models that cite this paper

Allen JB, Sondhi MM (1979) Cochlear macromechanics: time domain solutions. J Acoust Soc Am 66:123-32 [PubMed]

Altoè A, Pulkki V, Verhulst S (2014) Transmission line cochlear models: improved accuracy and efficiency. J Acoust Soc Am 136:EL302-8 [Journal] [PubMed]

   Human auditory periphery model: cochlea, IHC-AN, auditory brainstem responses (Verhulst et al 2018) [Model]

Altoè A, Pulkki V, Verhulst S (2017) Model-based estimation of the frequency tuning of the inner-hair-cell stereocilia from neural tuning curves. J Acoust Soc Am 141:4438 [Journal] [PubMed]

Altoè A, Pulkki V, Verhulst S (2018) The effects of the activation of the inner-hair-cell basolateral K+ channels on auditory nerve responses. Hear Res 364:68-80 [Journal] [PubMed]

   Human auditory periphery model: cochlea, IHC-AN, auditory brainstem responses (Verhulst et al 2018) [Model]

Beutner D, Voets T, Neher E, Moser T (2001) Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29:681-90 [PubMed]

Bharadwaj HM, Masud S, Mehraei G, Verhulst S, Shinn-Cunningham BG (2015) Individual differences reveal correlates of hidden hearing deficits. J Neurosci 35:2161-72 [Journal] [PubMed]

Bharadwaj HM, Shinn-Cunningham BG (2014) Rapid acquisition of auditory subcortical steady state responses using multichannel recordings. Clin Neurophysiol 125:1878-88 [Journal] [PubMed]

Bharadwaj HM, Verhulst S, Shaheen L, Liberman MC, Shinn-Cunningham BG (2014) Cochlear neuropathy and the coding of supra-threshold sound. Front Syst Neurosci 8:26 [Journal] [PubMed]

Bidelman GM (2015) Multichannel recordings of the human brainstem frequency-following response: scalp topography, source generators, and distinctions from the transient ABR. Hear Res 323:68-80 [Journal] [PubMed]

Bourien J, Tang Y, Batrel C, Huet A, Lenoir M, Ladrech S, Desmadryl G, Nouvian R, Puel JL, Wang J (2014) Contribution of auditory nerve fibers to compound action potential of the auditory nerve. J Neurophysiol 112:1025-39 [Journal] [PubMed]

Chapochnikov NM, Takago H, Huang CH, Pangršic T, Khimich D, Neef J, Auge E, Göttfert F, Hell SW, Wichmann C, Wolf F, Moser T (2014) Uniquantal release through a dynamic fusion pore is a candidate mechanism of hair cell exocytosis. Neuron 83:1389-403 [Journal] [PubMed]

Cheatham MA, Dallos P (1999) Response phase: a view from the inner hair cell. J Acoust Soc Am 105:799-810 [PubMed]

Corns LF, Johnson SL, Kros CJ, Marcotti W (2014) Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells. Proc Natl Acad Sci U S A 111:14918-23 [Journal] [PubMed]

Dau T (2003) The importance of cochlear processing for the formation of auditory brainstem and frequency following responses. J Acoust Soc Am 113:936-50 [PubMed]

Dau T, Kollmeier B, Kohlrausch A (1997) Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. J Acoust Soc Am 102:2892-905 [PubMed]

Dau T, Wegner O, Mellert V, Kollmeier B (2000) Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion. J Acoust Soc Am 107:1530-40 [PubMed]

Davis H (1965) A model for transducer action in the cochlea. Cold Spring Harb Symp Quant Biol 30:181-90 [PubMed]

Delgutte B,Hammond BM,Cariani PA (1998) Neural coding of the temporal envelope of speech: relation to modulation transfer functions Psychophysical and Physiological Advances in Hearing, Palmer AR:Rees A:Summerfield AQ:Meddis R, ed. pp.595

Dolphin WF (1996) Auditory evoked responses to amplitude modulated stimuli consisting of multiple envelope components J. Comp. Physiol. 179(1):113-121

Dolphin WF, Mountain DC (1992) The envelope following response: scalp potentials elicited in the Mongolian gerbil using sinusoidally AM acoustic signals. Hear Res 58:70-8 [PubMed]

Don M, Eggermont JJ (1978) Analysis of the click-evoked brainstem potentials in man unsing high-pass noise masking. J Acoust Soc Am 63:1084-92 [PubMed]

Duifhuis H (2012) Springer Science & Business Media Cochlear Mechanics: Introduction to a Time Domain Analysis of the Nonlinear Cochlea

Elberling C, Callø J, Don M (2010) Evaluating auditory brainstem responses to different chirp stimuli at three levels of stimulation. J Acoust Soc Am 128:215-23 [Journal] [PubMed]

Elliott SJ, Ku EM, Lineton B (2007) A state space model for cochlear mechanics. J Acoust Soc Am 122:2759-71 [Journal] [PubMed]

Encina-Llamas G,Dau T,Epp B (2007) Estimates of peripheral compression using envelope following responses J. Assoc. Res. Otolaryngol.

Epp B,Verhey JL,Mauermann M (2010) Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics J. Acoust. Soc. Am. 128(4):1870-1883

Ewert SD, Dau T (2000) Characterizing frequency selectivity for envelope fluctuations. J Acoust Soc Am 108:1181-96 [PubMed]

Frank T, Khimich D, Neef A, Moser T (2009) Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells. Proc Natl Acad Sci U S A 106:4483-8 [Journal] [PubMed]

Frisina RD, Smith RL, Chamberlain SC (1990) Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hear Res 44:99-122 [PubMed]

Furman AC, Kujawa SG, Liberman MC (2013) Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 110:577-86 [Journal] [PubMed]

Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613-36 [Journal] [PubMed]

Gorga MP, Neely ST, Kopun J, Tan H (2011) Growth of suppression in humans based on distortion-product otoacoustic emission measurements. J Acoust Soc Am 129:801-6 [Journal] [PubMed]

Gorga MP, Worthington DW, Reiland JK, Beauchaine KA, Goldgar DE (1985) Some comparisons between auditory brain stem response thresholds, latencies, and the pure-tone audiogram. Ear Hear 6:105-12 [PubMed]

Gorga MP,Neely ST,Kopun J,Tan H (2011) Distortion-product otoacoustic emission suppression tuning curves in humans J. Acoust. Soc. Am. 129(2):817-827

Goutman JD, Glowatzki E (2007) Time course and calcium dependence of transmitter release at a single ribbon synapse. Proc Natl Acad Sci U S A 104:16341-6 [Journal] [PubMed]

Grant L, Yi E, Glowatzki E (2010) Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse. J Neurosci 30:4210-20 [Journal] [PubMed]

Greenwood DD (1990) A cochlear frequency-position function for several species--29 years later. J Acoust Soc Am 87:2592-605 [PubMed]

Han LA, Poulsen T (1998) Equivalent threshold sound pressure levels for Sennheiser HDA 200 earphone and Etymotic Research ER-2 insert earphone in the frequency range 125 Hz to 16 kHz. Scand Audiol 27:105-12 [PubMed]

Harris DM, Dallos P (1979) Forward masking of auditory nerve fiber responses. J Neurophysiol 42:1083-1107 [Journal] [PubMed]

Heil P, Neubauer H (2010) Summing Across Different Active Zones can Explain the Quasi-Linear Ca-Dependencies of Exocytosis by Receptor Cells. Front Synaptic Neurosci 2:148 [Journal] [PubMed]

Heinz MG, Zhang X, Bruce IC, Carney LH (2001) Auditory nerve model for predicting performance limits of normal and impaired listeners. Acoustics Research Letters Online 2(3):91-96 [Journal]

   Auditory nerve model for predicting performance limits (Heinz et al 2001) [Model]

Hudspeth AJ, Lewis RS (1988) A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog, Rana catesbeiana. J Physiol 400:275-97 [PubMed]

Huet A, Batrel C, Tang Y, Desmadryl G, Wang J, Puel JL, Bourien J (2016) Sound coding in the auditory nerve of gerbils. Hear Res 338:32-9 [Journal] [PubMed]

Jepsen ML, Dau T (2011) Characterizing auditory processing and perception in individual listeners with sensorineural hearing loss. J Acoust Soc Am 129:262-81 [Journal] [PubMed]

Jepsen ML, Ewert SD, Dau T (2008) A computational model of human auditory signal processing and perception. J Acoust Soc Am 124:422-38 [Journal] [PubMed]

Jia S, Dallos P, He DZ (2007) Mechanoelectric transduction of adult inner hair cells. J Neurosci 27:1006-14 [Journal] [PubMed]

Jiang ZD, Zheng MS, Sun DK, Liu XY (1991) Brainstem auditory evoked responses from birth to adulthood: normative data of latency and interval. Hear Res 54:67-74 [PubMed]

Johnson SL (2015) Membrane properties specialize mammalian inner hair cells for frequency or intensity encoding. Elife [Journal] [PubMed]

Johnson SL, Beurg M, Marcotti W, Fettiplace R (2011) Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant. Neuron 70:1143-54 [Journal] [PubMed]

Johnson SL, Marcotti W (2008) Biophysical properties of CaV1.3 calcium channels in gerbil inner hair cells. J Physiol 586:1029-42 [Journal] [PubMed]

Jørgensen S,Ewert SD,Dau T (2013) A multi-resolution envelope-power based model for speech intelligibility J. Acoust. Soc. Am. 134(1):436-446

Joris PX, Bergevin C, Kalluri R, Mc Laughlin M, Michelet P, van der Heijden M, Shera CA (2011) Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans. Proc Natl Acad Sci U S A 108:17516-20 [Journal] [PubMed]

Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541-77 [Journal] [PubMed]

Joris PX, Yin TC (1992) Responses to amplitude-modulated tones in the auditory nerve of the cat. J Acoust Soc Am 91:215-32 [PubMed]

Jürgens T, Clark NR, Lecluyse W, Meddis R (2016) Exploration of a physiologically-inspired hearing-aid algorithm using a computer model mimicking impaired hearing. Int J Audiol 55:346-57 [Journal] [PubMed]

Kapadia S, Lutman ME (2000) Nonlinear temporal interactions in click-evoked otoacoustic emissions. II. Experimental data. Hear Res 146:101-20 [PubMed]

Kennedy HJ, Evans MG, Crawford AC, Fettiplace R (2003) Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nat Neurosci 6:832-6 [Journal] [PubMed]

Kidd RC, Weiss TF (1990) Mechanisms that degrade timing information in the cochlea. Hear Res 49:181-207 [PubMed]

Kros CJ, Crawford AC (1990) Potassium currents in inner hair cells isolated from the guinea-pig cochlea. J Physiol 421:263-91 [PubMed]

Kros CJ, Rüsch A, Richardson GP (1992) Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc Biol Sci 249:185-93 [Journal] [PubMed]

Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss. J Neurosci 29:14077-85 [Journal] [PubMed]

Kuwada S, Batra R, Maher VL (1986) Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones. Hear Res 21:179-92 [PubMed]

Lewis JD, Neely ST (2015) Non-invasive estimation of middle-ear input impedance and efficiency. J Acoust Soc Am 138:977-93 [Journal] [PubMed]

Liberman LD, Wang H, Liberman MC (2011) Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. J Neurosci 31:801-8 [Journal] [PubMed]

Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442-55 [PubMed]

Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF (2016) Toward a Differential Diagnosis of Hidden Hearing Loss in Humans. PLoS One 11:e0162726 [Journal] [PubMed]

Lin HW, Furman AC, Kujawa SG, Liberman MC (2011) Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 12:605-16 [Journal] [PubMed]

Liu YW, Neely ST (2010) Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells. J Acoust Soc Am 127:2420-32 [Journal] [PubMed]

Lopez-Poveda EA, Eustaquio-Martín A (2006) A biophysical model of the inner hair cell: the contribution of potassium currents to peripheral auditory compression. J Assoc Res Otolaryngol 7:218-35 [Journal] [PubMed]

Lynch TJ, Nedzelnitsky V, Peake WT (1982) Input impedance of the cochlea in cat. J Acoust Soc Am 72:108-30 [PubMed]

Lyon RF (2011) Cascades of two-pole-two-zero asymmetric resonators are good models of peripheral auditory function. J Acoust Soc Am 130:3893-904 [Journal] [PubMed]

Manley GA,Fay RR (2007) Active Processes and Otoacoustic Emissions in Hearing

Mao J, Carney LH (2015) Tone-in-noise detection using envelope cues: comparison of signal-processing-based and physiological models. J Assoc Res Otolaryngol 16:121-33 [Journal] [PubMed]

Marcotti W, Johnson SL, Kros CJ (2004) A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells. J Physiol 560:691-708 [Journal] [PubMed]

Meaud J, Grosh K (2010) The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics. J Acoust Soc Am 127:1411-21 [Journal] [PubMed]

Meddis R (1986) Simulation of mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 79:702-11 [PubMed]

Meddis R (2006) Auditory-nerve first-spike latency and auditory absolute threshold: a computer model. J Acoust Soc Am 119:406-17 [PubMed]

Meddis R, O'Mard L (1997) A unitary model of pitch perception. J Acoust Soc Am 102:1811-20 [PubMed]

Meddis R, O'Mard LP, Lopez-Poveda EA (2001) A computational algorithm for computing nonlinear auditory frequency selectivity. J Acoust Soc Am 109:2852-61 [PubMed]

Mehraei G, Hickox AE, Bharadwaj HM, Goldberg H, Verhulst S, Liberman MC, Shinn-Cunningham BG (2016) Auditory Brainstem Response Latency in Noise as a Marker of Cochlear Synaptopathy. J Neurosci 36:3755-64 [Journal] [PubMed]

Melcher JR, Kiang NY (1996) Generators of the brainstem auditory evoked potential in cat. III: Identified cell populations. Hear Res 93:52-71 [PubMed]

Meyer AC, Frank T, Khimich D, Hoch G, Riedel D, Chapochnikov NM, Yarin YM, Harke B, Hell SW, Egner A, Moser T (2009) Tuning of synapse number, structure and function in the cochlea. Nat Neurosci 12:444-53 [Journal] [PubMed]

Miller CA, Abbas PJ, Robinson BK (2001) Response properties of the refractory auditory nerve fiber. J Assoc Res Otolaryngol 2:216-32 [PubMed]

Moezzi B, Iannella N, McDonnell MD (2016) Ion channel noise can explain firing correlation in auditory nerves. J Comput Neurosci 41:193-206 [Journal] [PubMed]

Möhrle D, Ni K, Varakina K, Bing D, Lee SC, Zimmermann U, Knipper M, Rüttiger L (2016) Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain. Neurobiol Aging 44:173-184 [Journal] [PubMed]

Moleti A, Paternoster N, Bertaccini D, Sisto R, Sanjust F (2009) Otoacoustic emissions in time-domain solutions of nonlinear non-local cochlear models. J Acoust Soc Am 126:2425-36 [Journal] [PubMed]

Nedzelnitsky V (1980) Sound pressures in the basal turn of the cat cochlea. J Acoust Soc Am 68:1676-89 [PubMed]

Neely ST, Johnson TA, Kopun J, Dierking DM, Gorga MP (2009) Distortion-product otoacoustic emission input/output characteristics in normal-hearing and hearing-impaired human ears. J Acoust Soc Am 126:728-38 [Journal] [PubMed]

Neely ST, Kim DO (1983) An active cochlear model showing sharp tuning and high sensitivity. Hear Res 9:123-30 [PubMed]

Nelson PC, Carney LH (2004) A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. J Acoust Soc Am 116:2173-86 [PubMed]

   Model of neural responses to amplitude-modulated tones (Nelson and Carney 2004) [Model]

Oertel D (1983) Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. J Neurosci 3:2043-53 [PubMed]

Ohn TL, Rutherford MA, Jing Z, Jung S, Duque-Afonso CJ, Hoch G, Picher MM, Scharinger A, Strenzke N, Moser T (2016) Hair cells use active zones with different voltage dependence of Ca2+ influx to decompose sounds into complementary neural codes. Proc Natl Acad Sci U S A 113:E4716-25 [Journal] [PubMed]

Palmer AR, Russell IJ (1986) Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hear Res 24:1-15 [PubMed]

Pangrsic T, Lasarow L, Reuter K, Takago H, Schwander M, Riedel D, Frank T, Tarantino LM, Bailey JS, Strenzke N, Brose N, Müller U, Reisinger E, Moser T (2010) Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells. Nat Neurosci 13:869-76 [Journal] [PubMed]

Peterson AJ, Irvine DR, Heil P (2014) A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers. J Neurosci 34:15097-109 [Journal] [PubMed]

Picton TW (2011) Chapter 8: Auditory brainstem responses: peaks along the way Human auditory evoked potentials :213-245

Picton TW, Stapells DR, Campbell KB (1981) Auditory evoked potentials from the human cochlea and brainstem. J Otolaryngol Suppl 9:1-41 [PubMed]

Pieper I, Mauermann M, Kollmeier B, Ewert SD (2016) Physiological motivated transmission-lines as front end for loudness models. J Acoust Soc Am 139:2896 [Journal] [PubMed]

Plack CJ, Barker D, Prendergast G (2014) Perceptual consequences of "hidden" hearing loss. Trends Hear [Journal] [PubMed]

Prosser S, Arslan E (1987) Prediction of auditory brainstem wave V latency as a diagnostic tool of sensorineural hearing loss. Audiology 26:179-87 [PubMed]

Puria S (2003) Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. J Acoust Soc Am 113:2773-89 [PubMed]

Puria S, Allen JB (1991) A parametric study of cochlear input impedance. J Acoust Soc Am 89:287-309 [PubMed]

Raufer S, Verhulst S (2016) Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning. Hear Res 342:150-160 [Journal] [PubMed]

Recio A, Rhode WS (2000) Basilar membrane responses to broadband stimuli. J Acoust Soc Am 108:2281-98 [PubMed]

Relkin EM, Doucet JR (1991) Recovery from prior stimulation. I: Relationship to spontaneous firing rates of primary auditory neurons. Hear Res 55:215-22 [PubMed]

Rhode WS (2007) Basilar membrane mechanics in the 6e9 kHz region of sensitive chinchilla cochleae J. Acoust. Soc. Am. 121(5):2792-2804

Rhode WS, Smith PH (1985) Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers. Hear Res 18:159-68 [PubMed]

Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305-52 [Journal] [PubMed]

Rønne FM, Dau T, Harte J, Elberling C (2012) Modeling auditory evoked brainstem responses to transient stimuli. J Acoust Soc Am 131:3903-13 [Journal] [PubMed]

Rosen S, Baker RJ (1994) Characterising auditory filter nonlinearity. Hear Res 73:231-43 [PubMed]

Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L (1997) Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151-63 [PubMed]

Ruggero MA, Robles L, Rich NC (1992) Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression. J Neurophysiol 68:1087-99 [Journal] [PubMed]

Russell IJ, Cody AR, Richardson GP (1986) The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro. Hear Res 22:199-216 [PubMed]

Russell IJ, Sellick PM (1983) Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells. J Physiol 338:179-206 [PubMed]

Sachs MB, Abbas PJ (1974) Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J Acoust Soc Am 56:1835-47 [PubMed]

Saremi A, Beutelmann R, Dietz M, Ashida G, Kretzberg J, Verhulst S (2016) A comparative study of seven human cochlear filter models. J Acoust Soc Am 140:1618 [Journal] [PubMed]

Schaette R, McAlpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31:13452-7 [Journal] [PubMed]

Schmiedt RA (2010) The physiology of cochlear presbycusis The Aging Auditory System :9-38

Sellick PM, Russell IJ (1980) The responses of inner hair cells to basilar membrane velocity during low frequency auditory stimulation in the guinea pig cochlea. Hear Res 2:439-45 [PubMed]

Serpanos YC, O'Malley H, Gravel JS (1997) The relationship between loudness intensity functions and the click-ABR wave V latency. Ear Hear 18:409-19 [PubMed]

Shaheen LA, Valero MD, Liberman MC (2015) Towards a Diagnosis of Cochlear Neuropathy with Envelope Following Responses. J Assoc Res Otolaryngol 16:727-45 [Journal] [PubMed]

Shamma SA, Chadwick RS, Wilbur WJ, Morrish KA, Rinzel J (1986) A biophysical model of cochlear processing: intensity dependence of pure tone responses. J Acoust Soc Am 80:133-45 [PubMed]

Shera CA (2001) Frequency glides in click responses of the basilar membrane and auditory nerve: their scaling behavior and origin in traveling-wave dispersion. J Acoust Soc Am 109:2023-34 [PubMed]

Shera CA, Guinan JJ, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11:343-65 [Journal] [PubMed]

Shera CA, Zweig G (1991) A symmetry suppresses the cochlear catastrophe. J Acoust Soc Am 89:1276-89 [PubMed]

Strelcyk O, Christoforidis D, Dau T (2009) Relation between derived-band auditory brainstem response latencies and behavioral frequency selectivity. J Acoust Soc Am 126:1878-88 [Journal] [PubMed]

Sumner CJ, Lopez-Poveda EA, O'Mard LP, Meddis R (2002) A revised model of the inner-hair cell and auditory-nerve complex. J Acoust Soc Am 111:2178-88 [PubMed]

Sumner CJ, Lopez-Poveda EA, O'Mard LP, Meddis R (2003) Adaptation in a revised inner-hair cell model. J Acoust Soc Am 113:893-901 [PubMed]

Taberner AM, Liberman MC (2005) Response properties of single auditory nerve fibers in the mouse. J Neurophysiol 93:557-69 [Journal] [PubMed]

Takanen M, Santala O, Pulkki V (2014) Visualization of functional count-comparison-based binaural auditory model output. Hear Res 309:147-63 [Journal] [PubMed]

Talmadge CL, Tubis A, Long GR, Piskorski P (1998) Modeling otoacoustic emission and hearing threshold fine structures. J Acoust Soc Am 104:1517-43 [PubMed]

Trautwein P, Hofstetter P, Wang J, Salvi R, Nostrant A (1996) Selective inner hair cell loss does not alter distortion product otoacoustic emissions. Hear Res 96:71-82 [PubMed]

Valero MD, Burton JA, Hauser SN, Hackett TA, Ramachandran R, Liberman MC (2017) Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta). Hear Res 353:213-223 [Journal] [PubMed]

van Hengel PW, Duifhuis H, van den Raadt MP (1996) Spatial periodicity in the cochlea: the result of interaction of spontaneous emissions? J Acoust Soc Am 99:3566-71 [PubMed]

Vannucci G,Teich MC (1978) Effects of rate variation on the counting statistics of dead-time-modified Poisson processes Optic Commun. 25(2):267-272

Verhulst S (2010) Characterizing and Modeling Dynamic Processes in the Cochlea Using Otoacoustic Emissions. Ph.D. thesis

Verhulst S, Dau T, Shera CA (2012) Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. J Acoust Soc Am 132:3842-8 [Journal] [PubMed]

   Human auditory periphery model: cochlea, IHC-AN, auditory brainstem responses (Verhulst et al 2018) [Model]

Verhulst S, Harte JM, Dau T (2011) Temporal suppression of the click-evoked otoacoustic emission level-curve. J Acoust Soc Am 129:1452-63 [Journal] [PubMed]

Verhulst S, Jagadeesh A, Mauermann M, Ernst F (2016) Individual Differences in Auditory Brainstem Response Wave Characteristics: Relations to Different Aspects of Peripheral Hearing Loss. Trends Hear [Journal] [PubMed]

Verhulst S,Bharadwaj HM,Mehraei G,Shera CA,Shinn-Cunningham BG (2015) Functional modeling of the human auditory brainstem response to broadband stimulation J. Acoust. Soc. Am. 138(3):1637-1659

von Békésy G (1970) Travelling waves as frequency analysers in the cochlea. Nature 225:1207-9 [PubMed]

Westerman LA, Smith RL (1984) Rapid and short-term adaptation in auditory nerve responses. Hear Res 15:249-60 [PubMed]

Westerman LA, Smith RL (1988) A diffusion model of the transient response of the cochlear inner hair cell synapse. J Acoust Soc Am 83:2266-76 [PubMed]

Winslow RL, Sachs MB (1987) Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise. J Neurophysiol 57:1002-21 [Journal] [PubMed]

Winter IM, Palmer AR (1991) Intensity coding in low-frequency auditory-nerve fibers of the guinea pig. J Acoust Soc Am 90:1958-67 [PubMed]

Zagaeski M, Cody AR, Russell IJ, Mountain DC (1994) Transfer characteristic of the inner hair cell synapse: steady-state analysis. J Acoust Soc Am 95:3430-4 [PubMed]

Zeddies DG, Siegel JH (2004) A biophysical model of an inner hair cell. J Acoust Soc Am 116:426-41 [PubMed]

Zhang X, Carney LH (2005) Analysis of models for the synapse between the inner hair cell and the auditory nerve. J Acoust Soc Am 118:1540-53 [PubMed]

   Models analysis for auditory-nerve synapse (Zhang and Carney 2005) [Model]

Zhang X, Heinz MG, Bruce IC, Carney LH (2001) A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J Acoust Soc Am 109:648-70 [PubMed]

   Auditory nerve response model (Zhang et al 2001) [Model]

Zilany MS, Bruce IC (2006) Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am 120:1446-66 [PubMed]

   Cat auditory nerve model (Zilany and Bruce 2006, 2007) [Model]

Zilany MS, Bruce IC, Carney LH (2014) Updated parameters and expanded simulation options for a model of the auditory periphery. J Acoust Soc Am 135:283-6 [Journal] [PubMed]

   Cochlea: inner ear models in Python (Zilany et al 2009, 2014; Holmberg M 2007) [Model]

Zilany MS, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390-412 [Journal] [PubMed]

   Long-term adaptation with power-law dynamics (Zilany et al. 2009) [Model]
   Cochlea: inner ear models in Python (Zilany et al 2009, 2014; Holmberg M 2007) [Model]

Zweig G (1976) Basilar membrane motion. Cold Spring Harb Symp Quant Biol 40:619-33 [PubMed]

Zweig G (1991) Finding the impedance of the organ of Corti. J Acoust Soc Am 89:1229-54 [PubMed]

Zweig G (2016) Nonlinear cochlear mechanics. J Acoust Soc Am 139:2561 [Journal] [PubMed]

(155 refs)