Citation Relationships

Altoè A, Pulkki V, Verhulst S (2014) Transmission line cochlear models: improved accuracy and efficiency. J Acoust Soc Am 136:EL302-8 [PubMed]

   Human auditory periphery model: cochlea, IHC-AN, auditory brainstem responses (Verhulst et al 2018)

References and models cited by this paper

References and models that cite this paper

Catmull E,Rom R (1974) A class of local interpolating splines Computer Aided Geometric Design, Barnhill RE:Reisenfeld RF, ed. pp.317

Cohen-Schotanus J, Reinders JJ, Agsteribbe J, Meyboom-de Jong B (2002) [Physicians for ten years: a longitudinal survey of the career development of physicians who began their studies in Groningen, the Netherlands]. Ned Tijdschr Geneeskd 146:2474-8 [PubMed]

DeRose TD,Barsky BA (1988) Geometric continuity, shape parameters, and geometric constructions for catmull-rom splines ACM T. Graphic 7:1-41 [Journal]

Diependaal RJ, Duifhuis H, Hoogstraten HW, Viergever MA (1987) Numerical methods for solving one-dimensional cochlear models in the time domain. J Acoust Soc Am 82:1655-66 [PubMed]

Dormand JR, Prince PJ (1980) A family of embedded Runge-Kuttaformulae J Comput Appl Math 6:19-26

Elliott SJ, Ku EM, Lineton B (2007) A state space model for cochlear mechanics. J Acoust Soc Am 122:2759-71 [Journal] [PubMed]

Epp B, Verhey JL, Mauermann M (2010) Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics. J Acoust Soc Am 128:1870-83 [Journal] [PubMed]

Greenwood DD (1961) Critical bandwidth and the frequency coordinates of the basilar membrane J. Acoust. Soc. Am. 33:1344-1356 [Journal]

Moleti A, Paternoster N, Bertaccini D, Sisto R, Sanjust F (2009) Otoacoustic emissions in time-domain solutions of nonlinear non-local cochlear models. J Acoust Soc Am 126:2425-36 [Journal] [PubMed]

Rapson MJ, Tapson JC, Karpul D (2012) Unification and extension of monolithic state space and iterative cochlear models. J Acoust Soc Am 131:3935-52 [Journal] [PubMed]

Santurette S, Dau T, Oxenham AJ (2012) On the possibility of a place code for the low pitch of high-frequency complex tones. J Acoust Soc Am 132:3883-95 [Journal] [PubMed]

Shera CA (2001) Intensity-invariance of fine time structure in basilar-membrane click responses: implications for cochlear mechanics. J Acoust Soc Am 110:332-48 [PubMed]

Søndergaard P,Majdak P (2013) The auditory modeling toolbox The Technology of Binaural Listening, Blauert J, ed. pp.33

Takanen M, Santala O, Pulkki V (2014) Visualization of functional count-comparison-based binaural auditory model output. Hear Res 309:147-63 [Journal] [PubMed]

Verhulst S (2010) Characterizing and Modeling Dynamic Processes in the Cochlea Using Otoacoustic Emissions. Ph.D. thesis

Verhulst S, Dau T, Shera CA (2012) Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. J Acoust Soc Am 132:3842-8 [Journal] [PubMed]

   Human auditory periphery model: cochlea, IHC-AN, auditory brainstem responses (Verhulst et al 2018) [Model]

Verhulst S,Bharadwaj H,Mehraei G,Shinn-Cunningham B (2013) Understanding hearing impairment through model predictions of brainstem responses Proc. Meet. Acoust. 19:050182 [Journal]

Zweig G (1991) Finding the impedance of the organ of Corti. J Acoust Soc Am 89:1229-54 [PubMed]

Verhulst S, Altoè A, Vasilkov V (2018) Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hear Res 360:55-75 [Journal] [PubMed]

   Human auditory periphery model: cochlea, IHC-AN, auditory brainstem responses (Verhulst et al 2018) [Model]

(19 refs)