Citation Relationships



Verhulst S, Dau T, Shera CA (2012) Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. J Acoust Soc Am 132:3842-8 [PubMed]

   Human auditory periphery model: cochlea, IHC-AN, auditory brainstem responses (Verhulst et al 2018)

References and models cited by this paper

References and models that cite this paper

Choi YS, Lee SY, Parham K, Neely ST, Kim DO (2008) Stimulus-frequency otoacoustic emission: measurements in humans and simulations with an active cochlear model. J Acoust Soc Am 123:2651-69 [Journal] [PubMed]

Cohen-Schotanus J, Reinders JJ, Agsteribbe J, Meyboom-de Jong B (2002) [Physicians for ten years: a longitudinal survey of the career development of physicians who began their studies in Groningen, the Netherlands]. Ned Tijdschr Geneeskd 146:2474-8 [PubMed]

Dau T, Wegner O, Mellert V, Kollmeier B (2000) Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion. J Acoust Soc Am 107:1530-40 [PubMed]

Diependaal RJ, Duifhuis H, Hoogstraten HW, Viergever MA (1987) Numerical methods for solving one-dimensional cochlear models in the time domain. J Acoust Soc Am 82:1655-66 [PubMed]

Duifhuis H (2012) Springer Science & Business Media Cochlear Mechanics: Introduction to a Time Domain Analysis of the Nonlinear Cochlea

Duifhuis H,Hoogstraten HW,Netten SM,van Diependaal RJ,Bialek W (1985) Modelling the cochlear partition with coupled Van der Pol oscillators Peripheral Auditory Mechanisms, Allen JB:Hall JL:Hubbard AE:Neely ST:Tubis A, ed. pp.290

Elliott SJ, Ku EM, Lineton B (2007) A state space model for cochlear mechanics. J Acoust Soc Am 122:2759-71 [Journal] [PubMed]

Epp B, Verhey JL, Mauermann M (2010) Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics. J Acoust Soc Am 128:1870-83 [Journal] [PubMed]

Gentle JE (1998) Gaussian Elimination 3.1 Numerical Linear Algebra for Applications in Statistics :87-91

Glasberg BR, Moore BC (1990) Derivation of auditory filter shapes from notched-noise data. Hear Res 47:103-38 [PubMed]

Greenwood DD (1961) Critical bandwidth and the frequency coordinates of the basilar membrane J. Acoust. Soc. Am. 33:1344-1356 [Journal]

Kalluri R, Shera CA (2007) Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 121:2097-110 [PubMed]

Kemp DT, Chum R (1980) Properties of the generator of stimulated acoustic emissions. Hear Res 2:213-32 [PubMed]

Liu YW, Neely ST (2010) Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells. J Acoust Soc Am 127:2420-32 [Journal] [PubMed]

Moleti A, Paternoster N, Bertaccini D, Sisto R, Sanjust F (2009) Otoacoustic emissions in time-domain solutions of nonlinear non-local cochlear models. J Acoust Soc Am 126:2425-36 [Journal] [PubMed]

Moore BC, Glasberg BR (1983) Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. J Acoust Soc Am 74:750-3 [PubMed]

Oxenham AJ, Shera CA (2003) Estimates of human cochlear tuning at low levels using forward and simultaneous masking. J Assoc Res Otolaryngol 4:541-54 [Journal] [PubMed]

Pigasse G (2008) Deriving cochlear delays in humans using otoacoustic emissions and auditory evoked potentials Ph.D. thesis,

Prieve BA, Falter SR (1995) COAEs and SSOAEs in adults with increased age. Ear Hear 16:521-8 [PubMed]

Probst R, Coats AC, Martin GK, Lonsbury-Martin BL (1986) Spontaneous, click-, and toneburst-evoked otoacoustic emissions from normal ears. Hear Res 21:261-75 [PubMed]

Puria S (2003) Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. J Acoust Soc Am 113:2773-89 [PubMed]

Recio A, Rhode WS (2000) Basilar membrane responses to broadband stimuli. J Acoust Soc Am 108:2281-98 [PubMed]

Ren T (2002) Longitudinal pattern of basilar membrane vibration in the sensitive cochlea. Proc Natl Acad Sci U S A 99:17101-6 [Journal] [PubMed]

Rhode WS, Recio A (2000) Study of mechanical motions in the basal region of the chinchilla cochlea. J Acoust Soc Am 107:3317-32 [PubMed]

Schairer KS, Ellison JC, Fitzpatrick D, Keefe DH (2006) Use of stimulus-frequency otoacoustic emission latency and level to investigate cochlear mechanics in human ears. J Acoust Soc Am 120:901-14 [PubMed]

Shera CA (2001) Intensity-invariance of fine time structure in basilar-membrane click responses: implications for cochlear mechanics. J Acoust Soc Am 110:332-48 [PubMed]

Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782-98 [PubMed]

Shera CA, Guinan JJ (2003) Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762-72 [PubMed]

Shera CA, Guinan JJ, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci U S A 99:3318-23 [Journal] [PubMed]

Shera CA, Guinan JJ, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11:343-65 [Journal] [PubMed]

Shera CA, Tubis A, Talmadge CL (2008) Testing coherent reflection in chinchilla: Auditory-nerve responses predict stimulus-frequency emissions. J Acoust Soc Am 124:381-95 [Journal] [PubMed]

Shera CA, Zweig G (1991) A symmetry suppresses the cochlear catastrophe. J Acoust Soc Am 89:1276-89 [PubMed]

Søndergaard PL,Culling JF,Dau T,Le Goff N,Jepsen ML,Majdak P,Wierstorf H (2011) Towards a binaural modelling toolbox Proceedings of Forum Acousticum

Talmadge CL, Tubis A, Long GR, Piskorski P (1998) Modeling otoacoustic emission and hearing threshold fine structures. J Acoust Soc Am 104:1517-43 [PubMed]

van Netten SM,Duifhuis H (1983) Modelling an active, nonlinear cochlea Mechanics of Hearing, de Boer E:Viergever MA, ed. pp.143

Verhulst S, Harte JM, Dau T (2011) Temporal suppression of the click-evoked otoacoustic emission level-curve. J Acoust Soc Am 129:1452-63 [Journal] [PubMed]

Verhulst S,Shera CA,Harte JM,Dau T (2011) Can a static nonlinearity account for the dynamics of otoacoustic emission suppression? What Fire is in Mine Ears: Progress in Auditory Biomechanics, Proceedings of the 11th International Mechanics of Hearing Workshop, Shera CA:Olson E, ed. pp.257

Zweig G (1990) The impedance of the organ of Corti Mechanics and Biophysics of Hearing, Lecture Notes in Biomathematics, Dallos PGeisler CDMatthews JW:Ruggero MA:Steele CR, ed. pp.362

Zweig G (1991) Finding the impedance of the organ of Corti. J Acoust Soc Am 89:1229-54 [PubMed]

Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018-47 [PubMed]

Altoè A, Pulkki V, Verhulst S (2014) Transmission line cochlear models: improved accuracy and efficiency. J Acoust Soc Am 136:EL302-8 [Journal] [PubMed]

   Human auditory periphery model: cochlea, IHC-AN, auditory brainstem responses (Verhulst et al 2018) [Model]

Verhulst S, Altoè A, Vasilkov V (2018) Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hear Res 360:55-75 [Journal] [PubMed]

   Human auditory periphery model: cochlea, IHC-AN, auditory brainstem responses (Verhulst et al 2018) [Model]

(42 refs)