Citation Relationships



Wang XJ (1999) Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J Neurosci 19:9587-603 [PubMed]

References and models cited by this paper

References and models that cite this paper

Alvarez FP, Destexhe A (2004) Simulating cortical network activity states constrained by intracellular recordings. Neurocomputing 58:285-290

Aviel Y, Horn D, Abeles M (2005) Memory capacity of balanced networks. Neural Comput 17:691-713 [Journal] [PubMed]

Bartolozzi C, Indiveri G (2007) Synaptic dynamics in analog VLSI. Neural Comput 19:2581-603 [Journal] [PubMed]

Brunel N, Wang XJ (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci 11:63-85 [PubMed]

Budd JM (2005) Theta oscillations by synaptic excitation in a neocortical circuit model. Proc Biol Sci 272:101-9 [Journal] [PubMed]

Cai D, Rangan AV, McLaughlin DW (2005) Architectural and synaptic mechanisms underlying coherent spontaneous activity in V1. Proc Natl Acad Sci U S A 102:5868-73 [Journal] [PubMed]

Cressman JR, Ullah G, Ziburkus J, Schiff SJ, Barreto E (2009) The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. J Comput Neurosci 26:159-70 [Journal] [PubMed]

   Single neuron with dynamic ion concentrations (Cressman et al. 2009) [Model]

Destexhe A, Rudolph M, Paré D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4:739-51 [Journal] [PubMed]

Drew PJ, Abbott LF (2003) Model of song selectivity and sequence generation in area HVc of the songbird. J Neurophysiol 89:2697-706 [Journal] [PubMed]

Durstewitz D, Gabriel T (2007) Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cereb Cortex 17:894-908 [Journal] [PubMed]

   Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006) [Model]

Ermentrout GB, Terman DH (2010) Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics, Antman SS:Marsden JE:Sirovich L:Wiggins, ed. pp.1 [Journal]

   Mathematical Foundations of Neuroscience (Ermentrout and Terman 2010) [Model]

Golomb D, Shedmi A, Curtu R, Ermentrout GB (2006) Persistent synchronized bursting activity in cortical tissues with low magnesium concentration: a modeling study. J Neurophysiol 95:1049-67 [Journal] [PubMed]

   Persistent synchronized bursting activity in cortical tissues (Golomb et al 2005) [Model]

Graupner M, Brunel N (2007) STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS Comput Biol 3:e221 [Journal] [PubMed]

   CaMKII system exhibiting bistability with respect to calcium (Graupner and Brunel 2007) [Model]

Gutkin BS, Laing CR, Colby CL, Chow CC, Ermentrout GB (2001) Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity. J Comput Neurosci 11:121-34 [PubMed]

Hansel D, Mato G (2003) Asynchronous states and the emergence of synchrony in large networks of interacting excitatory and inhibitory neurons. Neural Comput 15:1-56 [Journal] [PubMed]

Hayut I, Fanselow EE, Connors BW, Golomb D (2011) LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics. PLoS Comput Biol 7:e1002248 [Journal] [PubMed]

   Rate model of a cortical RS-FS-LTS network (Hayut et al. 2011) [Model]

Hazy TE, Frank MJ, O'reilly RC (2007) Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philos Trans R Soc Lond B Biol Sci 362:1601-13 [Journal] [PubMed]

Huang CH, Huang YT, Chen CC, Chan CK (2017) Propagation and synchronization of reverberatory bursts in developing cultured networks. J Comput Neurosci 42:177-185 [Journal] [PubMed]

   Reverberatory bursts propagation and synchronization in developing cultured NNs (Huang et al 2016) [Model]

Joelving FC, Compte A, Constantinidis C (2007) Temporal properties of posterior parietal neuron discharges during working memory and passive viewing. J Neurophysiol 97:2254-66 [Journal] [PubMed]

Kepecs A, Raghavachari S (2007) Gating information by two-state membrane potential fluctuations. J Neurophysiol 97:3015-23 [Journal] [PubMed]

Konstantoudaki X, Papoutsi A, Chalkiadaki K, Poirazi P, Sidiropoulou K (2014) Modulatory effects of inhibition on persistent activity in a cortical microcircuit model. Front Neural Circuits 8:7 [Journal] [PubMed]

   Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014) [Model]

Laing CR, Chow CC (2002) A spiking neuron model for binocular rivalry. J Comput Neurosci 12:39-53 [PubMed]

Laing CR, Longtin A (2003) Dynamics of deterministic and stochastic paired excitatory-inhibitory delayed feedback. Neural Comput 15:2779-822 [Journal] [PubMed]

Latham PE, Nirenberg S (2004) Computing and stability in cortical networks. Neural Comput 16:1385-412 [Journal] [PubMed]

Lim S, Goldman MS (2014) Balanced cortical microcircuitry for spatial working memory based on corrective feedback control. J Neurosci 34:6790-806 [Journal] [PubMed]

Ly C, Tranchina D (2007) Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling. Neural Comput 19:2032-92 [Journal] [PubMed]

Machens CK, Brody CD (2008) Design of continuous attractor networks with monotonic tuning using a symmetry principle. Neural Comput 20:452-85 [Journal] [PubMed]

Macoveanu J, Klingberg T, Tegnér J (2006) A biophysical model of multiple-item working memory: a computational and neuroimaging study. Neuroscience 141:1611-8 [Journal] [PubMed]

Miller P, Wang XJ (2006) Stability of discrete memory states to stochastic fluctuations in neuronal systems. Chaos 16:026109 [Journal] [PubMed]

Moreno-Bote R, Rinzel J, Rubin N (2007) Noise-induced alternations in an attractor network model of perceptual bistability. J Neurophysiol 98:1125-39 [Journal] [PubMed]

Neymotin SA, McDougal RA, Bulanova AS, Zeki M, Lakatos P, Terman D, Hines ML, Lytton WW (2016) Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neuroscience 316:344-66 [Journal] [PubMed]

   Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016) [Model]

O'Reilly RC, Frank MJ (2005) Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia Neural Comput 18:283-328

O'Reilly RC, Frank MJ (2006) Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput 18:283-328 [Journal] [PubMed]

Papoutsi A, Sidiropoulou K, Cutsuridis V, Poirazi P (2013) Induction and modulation of persistent activity in a layer V PFC microcircuit model. Front Neural Circuits 7:161 [Journal] [PubMed]

   L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013) [Model]

Papoutsi A, Sidiropoulou K, Poirazi P (2014) Dendritic nonlinearities reduce network size requirements and mediate ON and OFF states of persistent activity in a PFC microcircuit model. PLoS Comput Biol 10:e1003764 [Journal] [PubMed]

   L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013) [Model]

Pilly PK, Grossberg S (2013) Spiking neurons in a hierarchical self-organizing map model can learn to develop spatial and temporal properties of entorhinal grid cells and hippocampal place cells PLOS One 8(4):e60599 [Journal] [PubMed]

   Spiking GridPlaceMap model (Pilly & Grossberg, PLoS One, 2013) [Model]

Rangan AV, Cai D (2007) Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. J Comput Neurosci 22:81-100 [Journal] [PubMed]

Rangan AV, Cai D, McLaughlin DW (2005) Modeling the spatiotemporal cortical activity associated with the line-motion illusion in primary visual cortex. Proc Natl Acad Sci U S A 102:18793-800 [Journal] [PubMed]

Renart A, Moreno-Bote R, Wang XJ, Parga N (2007) Mean-driven and fluctuation-driven persistent activity in recurrent networks. Neural Comput 19:1-46 [Journal] [PubMed]

Romani S, Amit DJ, Mongillo G (2006) Mean-field analysis of selective persistent activity in presence of short-term synaptic depression. J Comput Neurosci 20:201-17 [Journal] [PubMed]

Schmidt-Hieber C, Toleikyte G, Aitchison L, Roth A, Clark BA, Branco T, Häusser M (2017) Active dendritic integration as a mechanism for robust and precise grid cell firing. Nat Neurosci 20:1114-1121 [Journal] [PubMed]

   Active dendritic integration in robust and precise grid cell firing (Schmidt-Hieber et al 2017) [Model]

Shelley MJ, Tao L (2001) Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. J Comput Neurosci 11:111-9 [PubMed]

Sidiropoulou K, Poirazi P (2012) Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons. PLoS Comput Biol 8:e1002489 [Journal] [PubMed]

   Layer V PFC pyramidal neuron used to study persistent activity (Sidiropoulou & Poirazi 2012) [Model]

Singh R, Eliasmith C (2006) Higher-dimensional neurons explain the tuning and dynamics of working memory cells. J Neurosci 26:3667-78 [Journal] [PubMed]

Song P, Wang XJ (2005) Angular path integration by moving "hill of activity": a spiking neuron model without recurrent excitation of the head-direction system. J Neurosci 25:1002-14 [Journal] [PubMed]

Teramae JN, Fukai T (2005) A Cellular Mechanism for Graded Persistent Activity in a Model Neuron and Its Implications in Working Memory J Comput Neurosci 18:105-121 [Journal] [PubMed]

Ullah G, Cressman JR, Barreto E, Schiff SJ (2009) The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states. II. Network and glial dynamics. J Comput Neurosci 26:171-83 [Journal] [PubMed]

   Network model with dynamic ion concentrations (Ullah et al. 2009) [Model]

Wong KF, Wang XJ (2006) A recurrent network mechanism of time integration in perceptual decisions. J Neurosci 26:1314-28 [Journal] [PubMed]

(48 refs)