References and models cited by this paper | References and models that cite this paper | |||||||||||||||||||||||||||||||||||||||||||||||
Chen M, Guo D, Li M, Ma T, Wu S, Ma J, Cui Y, Xia Y, Xu P, Yao D (2015) Critical Roles of the Direct GABAergic Pallido-cortical Pathway in Controlling Absence Seizures. PLoS Comput Biol 11:e1004539 [Journal] [PubMed]
Contreras-Vidal JL, Stelmach GE (1995) A neural model of basal ganglia-thalamocortical relations in normal and parkinsonian movement. Biol Cybern 73:467-76 [PubMed] Cutsuridis V (2006) Neural Model of Dopaminergic Control of Arm Movements in Parkinson's Disease Bradykinesia. Artificial Neural Networks - ICANN 2006, Lecture Notes in Computer Science, Part 1, LNCS 4131, Kollias S et al., ed. pp.583 [Journal]
Cutsuridis V, Perantonis S (2006) A neural network model of Parkinson's disease bradykinesia. Neural Netw 19:354-74 [Journal] [PubMed]
Damodaran S, Cressman JR, Jedrzejewski-Szmek Z, Blackwell KT (2015) Desynchronization of fast-spiking interneurons reduces ß-band oscillations and imbalance in firing in the dopamine-depleted striatum. J Neurosci 35:1149-59 [Journal] [PubMed]
Damodaran S, Evans RC, Blackwell KT (2014) Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. J Neurophysiol 111:836-48 [Journal] [PubMed]
Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci 17:51-72 [Journal] [PubMed]
Frank MJ (2006) Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw 19:1120-36 [Journal] [PubMed]
Frank MJ, Scheres A, Sherman SJ (2007) Understanding decision-making deficits in neurological conditions: insights from models of natural action selection. Philos Trans R Soc Lond B Biol Sci 362:1641-54 [Journal] [PubMed] Gillies A, Willshaw D (2006) Membrane channel interactions underlying rat subthalamic projection neuron rhythmic and bursting activity. J Neurophysiol 95:2352-65 [Journal] [PubMed]
Goldberg JH, Farries MA, Fee MS (2012) Integration of cortical and pallidal inputs in the basal ganglia-recipient thalamus of singing birds. J Neurophysiol 108:1403-29 [Journal] [PubMed]
Günay C, Edgerton JR, Jaeger D (2008) Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. J Neurosci 28:7476-91 [Journal] [PubMed]
Gurney K, Prescott TJ, Redgrave P (2001) A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol Cybern 84:401-10 [Journal] [PubMed]
Guthrie M, Leblois A, Garenne A, Boraud T (2013) Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study. J Neurophysiol 109:3025-40 [Journal] [PubMed]
Humphries MD, Lepora N, Wood R, Gurney K (2009) Capturing dopaminergic modulation and bimodal membrane behaviour of striatal medium spiny neurons in accurate, reduced models. Front Comput Neurosci 3:26 [Journal] [PubMed]
Humphries MD, Stewart RD, Gurney KN (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 26:12921-42 [Journal] [PubMed]
Kötter R, Wickens J (1998) Striatal mechanisms in Parkinson's disease: new insights from computer modeling. Artif Intell Med 13:37-55 [PubMed] Kumaravelu K, Brocker DT, Grill WM (2016) A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease. J Comput Neurosci 40:207-29 [Journal] [PubMed]
Leblois A, Boraud T, Meissner W, Bergman H, Hansel D (2006) Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J Neurosci 26:3567-83 [Journal] [PubMed]
Lindroos R, Dorst MC, Du K, Filipovic M, Keller D, Ketzef M, Kozlov AK, Kumar A, Lindahl M, Nair AG, Pérez-Fernández J, Grillner S, Silberberg G, Hellgren Kotaleski J (2018) Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Front Neural Circuits 12:3 [Journal] [PubMed]
Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ (2007) Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. J Neurosci 27:13552-66 [Journal] [PubMed]
Prescott TJ, Montes González FM, Gurney K, Humphries MD, Redgrave P (2006) A robot model of the basal ganglia: behavior and intrinsic processing. Neural Netw 19:31-61 [Journal] [PubMed]
Rubchinsky LL, Kopell N, Sigvardt KA (2003) Modeling facilitation and inhibition of competing motor programs in basal ganglia subthalamic nucleus-pallidal circuits. Proc Natl Acad Sci U S A 100:14427-32 [Journal] [PubMed] Rubin JE, Terman D (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci 16:211-35 [Journal] [PubMed] Salimi-Badr A, Ebadzadeh MM, Darlot C (2017) A possible correlation between the basal ganglia motor function and the inverse kinematics calculation. J Comput Neurosci 43:295-318 [Journal] [PubMed]
Salimi-Badr A, Ebadzadeh MM, Darlot C (2018) A system-level mathematical model of Basal Ganglia motor-circuit for kinematic planning of arm movements. Comput Biol Med 92:78-89 [Journal] [PubMed]
Sterratt D, Graham B, Gillies A, Willshaw D (2011) Principles of Computational Modelling in Neuroscience, Cambridge University Press :1-401 [Journal]
Terman D, Rubin JE, Yew AC, Wilson CJ (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22:2963-76 [Journal] [PubMed] Ursino M, Baston C (2018) Aberrant learning in Parkinson's disease: A neurocomputational study on bradykinesia. Eur J Neurosci 47:1563-1582 [Journal] [PubMed]
Wickens JR, Kotter R, Alexander ME (1995) Effects of local connectivity on striatal function: stimulation and analysis of a model. Synapse 20:281-98 [Journal] [PubMed] |