References and models cited by this paper | References and models that cite this paper | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Amos A (2000) A computational model of information processing in the frontal cortex and basal ganglia. J Cogn Neurosci 12:505-19 [PubMed] Bogacz R, Gurney K (2007) The basal ganglia and cortex implement optimal decision making between alternative actions. Neural Comput 19:442-77 [Journal] [PubMed] Brzosko Z, Zannone S, Schultz W, Clopath C, Paulsen O (2017) Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation. Elife [Journal] [PubMed]
Chartove JA, McCarthy MM, Pittman-Polletta BR, Kopell NJ (2020) A biophysical model of striatal microcircuits suggests gamma and beta oscillations interleaved at delta/theta frequencies mediate periodicity in motor control PLOS Computational Biology 16:1-30 [Journal]
Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W (2008) Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS Comput Biol 4:e1000248 [Journal] [PubMed]
Daw ND, Courville AC, Tourtezky DS, Touretzky DS (2006) Representation and timing in theories of the dopamine system. Neural Comput 18:1637-77 [Journal] [PubMed] Durstewitz D (2006) A few important points about dopamine's role in neural network dynamics. Pharmacopsychiatry 39 Suppl 1:S72-5 [Journal] [PubMed] Esposito U, Giugliano M, Vasilaki E (2014) Adaptation of short-term plasticity parameters via error-driven learning may explain the correlation between activity-dependent synaptic properties, connectivity motifs and target specificity. Front Comput Neurosci 8:175 [Journal] [PubMed]
Fiore VG, Ognibene D, Adinoff B, Gu X (2018) A Multilevel Computational Characterization of Endophenotypes in Addiction eNeuro [Journal]
Fleischer JG, Gally JA, Edelman GM, Krichmar JL (2007) Retrospective and prospective responses arising in a modeled hippocampus during maze navigation by a brain-based device. Proc Natl Acad Sci U S A 104:3556-61 [Journal] [PubMed] Fountas Z, Shanahan M (2017) The role of cortical oscillations in a spiking neural network model of the basal ganglia. PLoS One 12:e0189109 [Journal] [PubMed]
Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci 17:51-72 [Journal] [PubMed]
Frank MJ (2006) Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw 19:1120-36 [Journal] [PubMed]
Frank MJ, Seeberger LC, O'reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306:1940-3 [Journal] [PubMed]
Gluck MA, Myers C, Meeter M (2005) Cortico-hippocampal interaction and adaptive stimulus representation: a neurocomputational theory of associative learning and memory. Neural Netw 18:1265-79 [Journal] [PubMed] Gurney KN, Humphries MD, Redgrave P (2015) A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biol 13:e1002034 [Journal] [PubMed]
Hasselmo ME (2005) A model of prefrontal cortical mechanisms for goal-directed behavior. J Cogn Neurosci 17:1115-29 [Journal] [PubMed]
Izhikevich EM (2007) Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb Cortex 17:2443-52 [Journal] [PubMed]
Kato A, Morita K (2016) Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation. PLoS Comput Biol 12:e1005145 [Journal] [PubMed]
Krasne FB, Fanselow MS, Zelikowsky M (2011) Design of a neurally plausible model of fear learning. Front Behav Neurosci 5:41 [Journal] [PubMed]
Lindroos R, Dorst MC, Du K, Filipovic M, Keller D, Ketzef M, Kozlov AK, Kumar A, Lindahl M, Nair AG, Pérez-Fernández J, Grillner S, Silberberg G, Hellgren Kotaleski J (2018) Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Front Neural Circuits 12:3 [Journal] [PubMed]
Morita K, Kato A (2014) Striatal dopamine ramping may indicate flexible reinforcement learning with forgetting in the cortico-basal ganglia circuits. Front Neural Circuits 8:36 [Journal] [PubMed]
Moustafa AA, Cohen MX, Sherman SJ, Frank MJ (2008) A role for dopamine in temporal decision making and reward maximization in parkinsonism. J Neurosci 28:12294-304 [Journal] [PubMed] Moustafa AA, Gluck MA (2011) A neurocomputational model of dopamine and prefrontal-striatal interactions during multicue category learning by Parkinson patients. J Cogn Neurosci 23(1):151-67 [Journal]
Moustafa AA, Myers CE, Gluck MA (2009) A neurocomputational model of classical conditioning phenomena: a putative role for the hippocampal region in associative learning. Brain Res 1276:180-95 [Journal] [PubMed]
Nakano T, Doi T, Yoshimoto J, Doya K (2010) A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity. PLoS Comput Biol 6:e1000670 [Journal] [PubMed]
Nakano T, Otsuka M, Yoshimoto J, Doya K (2015) A spiking neural network model of model-free reinforcement learning with high-dimensional sensory input and perceptual ambiguity. PLoS One 10:e0115620 [Journal] [PubMed]
O'Reilly RC, Frank MJ (2005) Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia Neural Comput 18:283-328 O'Reilly RC, Frank MJ (2006) Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput 18:283-328 [Journal] [PubMed] Porr B, Wörgötter F (2006) Strongly improved stability and faster convergence of temporal sequence learning by using input correlations only. Neural Comput 18:1380-412 [Journal] [PubMed] Porr B, Wörgötter F (2007) Learning with "relevance": using a third factor to stabilize Hebbian learning. Neural Comput 19:2694-719 [Journal] [PubMed] Prescott TJ, Montes González FM, Gurney K, Humphries MD, Redgrave P (2006) A robot model of the basal ganglia: behavior and intrinsic processing. Neural Netw 19:31-61 [Journal] [PubMed]
Rivest F, Kalaska JF, Bengio Y (2010) Alternative time representation in dopamine models. J Comput Neurosci 28:107-30 [Journal] [PubMed]
Roelfsema PR, van Ooyen A (2005) Attention-gated reinforcement learning of internal representations for classification. Neural Comput 17:2176-214 [Journal] [PubMed] Rubchinsky LL, Kopell N, Sigvardt KA (2003) Modeling facilitation and inhibition of competing motor programs in basal ganglia subthalamic nucleus-pallidal circuits. Proc Natl Acad Sci U S A 100:14427-32 [Journal] [PubMed] Sakai Y, Fukai T (2008) The actor-critic learning is behind the matching law: matching versus optimal behaviors. Neural Comput 20:227-51 [Journal] [PubMed] Salimi-Badr A, Ebadzadeh MM, Darlot C (2017) A possible correlation between the basal ganglia motor function and the inverse kinematics calculation. J Comput Neurosci 43:295-318 [Journal] [PubMed]
Salimi-Badr A, Ebadzadeh MM, Darlot C (2018) A system-level mathematical model of Basal Ganglia motor-circuit for kinematic planning of arm movements. Comput Biol Med 92:78-89 [Journal] [PubMed]
Sejnowski TJ, Destexhe A (2000) Why do we sleep? Brain Res 886:208-223 [PubMed] Smith AJ, Becker S, Kapur S (2005) A computational model of the functional role of the ventral-striatal D2 receptor in the expression of previously acquired behaviors. Neural Comput 17:361-95 [Journal] [PubMed] Swinehart CD, Abbott LF (2005) Supervised learning through neuronal response modulation. Neural Comput 17:609-31 [Journal] [PubMed] Szita I, Lorincz A (2004) Kalman filter control embedded into the reinforcement learning framework. Neural Comput 16:491-9 [PubMed] Tarfa RA, Evans RC, Khaliq ZM (2017) Enhanced Sensitivity to Hyperpolarizing Inhibition in Mesoaccumbal Relative to Nigrostriatal Dopamine Neuron Subpopulations. J Neurosci 37:3311-3330 [Journal] [PubMed]
Toyoizumi T, Pfister JP, Aihara K, Gerstner W (2007) Optimality model of unsupervised spike-timing-dependent plasticity: synaptic memory and weight distribution. Neural Comput 19:639-71 [Journal] [PubMed] Ursino M, Baston C (2018) Aberrant learning in Parkinson's disease: A neurocomputational study on bradykinesia. Eur J Neurosci 47:1563-1582 [Journal] [PubMed]
Wörgötter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17:245-319 [Journal] [PubMed] Zannone S, Brzosko Z, Paulsen O, Clopath C (2018) Acetylcholine-modulated plasticity in reward-driven navigation: a computational study. Sci Rep 8:9486 [Journal] [PubMed]
|