Citation Relationships



Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442-55 [PubMed]

References and models cited by this paper

References and models that cite this paper

Colburn HS, Carney LH, Heinz MG (2003) Quantifying the information in auditory-nerve responses for level discrimination. J Assoc Res Otolaryngol 4:294-311 [Journal] [PubMed]

   Integrate and fire model code for spike-based coincidence-detection (Heinz et al. 2001, others) [Model]

Heinz MG, Colburn HS, Carney LH (2001) Evaluating auditory performance limits: i. one-parameter discrimination using a computational model for the auditory nerve. Neural Comput 13:2273-316 [Journal] [PubMed]

   Auditory nerve model with linear tuning (Heinz et al 2001) [Model]

Heinz MG, Colburn HS, Carney LH (2001) Rate and timing cues associated with the cochlear amplifier: level discrimination based on monaural cross-frequency coincidence detection. J Acoust Soc Am 110:2065-84 [PubMed]

   Integrate and fire model code for spike-based coincidence-detection (Heinz et al. 2001, others) [Model]

Heinz MG, Zhang X, Bruce IC, Carney LH (2001) Auditory nerve model for predicting performance limits of normal and impaired listeners. Acoustics Research Letters Online 2(3):91-96 [Journal]

   Auditory nerve model for predicting performance limits (Heinz et al 2001) [Model]

Jackson BS, Carney LH (2005) The spontaneous-rate histogram of the auditory nerve can be explained by only two or three spontaneous rates and long-range dependence. J Assoc Res Otolaryngol 6:148-59 [Journal] [PubMed]

   Auditory nerve spontaneous rate histograms (Jackson and Carney 2005) [Model]

Krishna BS (2002) A unified mechanism for spontaneous-rate and first-spike timing in the auditory nerve. J Comput Neurosci 13:71-91 [PubMed]

Nelson PC, Carney LH (2004) A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. J Acoust Soc Am 116:2173-86 [PubMed]

   Model of neural responses to amplitude-modulated tones (Nelson and Carney 2004) [Model]

Peterson AJ, Heil P (2018) A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times. Hear Res 363:1-27 [Journal] [PubMed]

Svirskis G, Kotak V, Sanes DH, Rinzel J (2002) Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons. J Neurosci 22:11019-25 [PubMed]

Tan Q, Carney LH (2003) A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide. J Acoust Soc Am 114:2007-20 [PubMed]

   Auditory nerve response model (Tan, Carney 2003) [Model]

Tan Q, Carney LH (2006) Predictions of formant-frequency discrimination in noise based on model auditory-nerve responses. J Acoust Soc Am 120:1435-45 [PubMed]

   Predicting formant-frequency discrimination in noise (Tan and Carney 2006) [Model]

Verhulst S, Altoè A, Vasilkov V (2018) Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hear Res 360:55-75 [Journal] [PubMed]

   Human auditory periphery model: cochlea, IHC-AN, auditory brainstem responses (Verhulst et al 2018) [Model]

Zhang X, Heinz MG, Bruce IC, Carney LH (2001) A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J Acoust Soc Am 109:648-70 [PubMed]

   Auditory nerve response model (Zhang et al 2001) [Model]

Zilany MS, Bruce IC (2006) Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am 120:1446-66 [PubMed]

   Cat auditory nerve model (Zilany and Bruce 2006, 2007) [Model]

Zilany MS, Bruce IC, Carney LH (2014) Updated parameters and expanded simulation options for a model of the auditory periphery. J Acoust Soc Am 135:283-6 [Journal] [PubMed]

   Cochlea: inner ear models in Python (Zilany et al 2009, 2014; Holmberg M 2007) [Model]

Zilany MS, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390-412 [Journal] [PubMed]

   Long-term adaptation with power-law dynamics (Zilany et al. 2009) [Model]
   Cochlea: inner ear models in Python (Zilany et al 2009, 2014; Holmberg M 2007) [Model]

(16 refs)