References and models cited by this paper | References and models that cite this paper | |||
Barlow HB, Levick WR (1969) Changes in the maintained discharge with adaptation level in the cat retina. J Physiol 202:699-718 [PubMed] BISHOP PO, BURKE W, DAVIS R (1958) Synapse discharge by single fibre in mammalian visual system. Nature 182:728-30 [PubMed] Cleland BG, Dubin MW, Levick WR (1971) Simultaneous recording of input and output of lateral geniculate neurones. Nat New Biol 231:191-2 [PubMed] Coenen AM, Vendrik AJ (1972) Determination of the transfer ratio of cat's geniculate neurons through quasi-intracellular recordings and the relation with the level of alertness. Exp Brain Res 14:227-42 [PubMed] Coulter DA, Huguenard JR, Prince DA (1989) Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current. J Physiol 414:587-604 [PubMed] Fourment A, Hirsch JC, Marc ME, Guidet C (1984) Modulation of postsynaptic activities of thalamic lateral geniculate neurons by spontaneous changes in number of retinal inputs in chronic cats. 1. Input-output relations. Neuroscience 12:453-64 [PubMed] Frishman LJ, Levine MW (1983) Statistics of the maintained discharge of cat retinal ganglion cells. J Physiol 339:475-94 [PubMed] Guido W, Lu SM, Sherman SM (1992) Relative contributions of burst and tonic responses to the receptive field properties of lateral geniculate neurons in the cat. J Neurophysiol 68:2199-211 [Journal] [PubMed] Hines M (1993) NEURON--a program for simulation of nerve equations. Neural Systems: Analysis And Modeling, Eeckman F, ed. pp.127 Hochstein S, Shapley RM (1976) Quantitative analysis of retinal ganglion cell classifications. J Physiol 262:237-64 [PubMed] HUBEL DH (1960) Single unit activity in lateral geniculate body and optic tract of unrestrained cats. J Physiol 150:91-104 [PubMed] HUBEL DH, WIESEL TN (1961) Integrative action in the cat's lateral geniculate body. J Physiol 155:385-98 [PubMed] Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 68:1373-83 [Journal] [PubMed] Jahnsen H, Llinás R (1984) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349:227-47 [PubMed] Jahnsen H, Llinás R (1984) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349:205-26 [PubMed] Kaplan E, Mukherjee P, Shapley RM (1993) Information filtering in the lateral geniculate nucleus Contrast Sensitivity, Lam DMK:Shapley R, ed. pp.183 Kaplan E, Purpura K, Shapley RM (1987) Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. J Physiol 391:267-88 [PubMed] Kaplan E, Shapley R (1984) The origin of the S (slow) potential in the mammalian lateral geniculate nucleus. Exp Brain Res 55:111-6 [PubMed] Kuffler SW, Fitzhugh R, Barlow HB (1957) Maintained activity in the cat’s retina in light and darkness J Gen Physiol 40:683-702 LEVICK WR, WILLIAMS WO (1964) MAINTAINED ACTIVITY OF LATERAL GENICULATE NEURONES IN DARKNESS. J Physiol 170:582-97 [PubMed] Levine MW, Troy JB (1986) The variability of the maintained discharge of cat dorsal lateral geniculate cells. J Physiol 375:339-59 [PubMed] Livingstone MS, Hubel DH (1981) Effects of sleep and arousal on the processing of visual information in the cat. Nature 291:554-61 [PubMed] Lo FS, Lu SM, Sherman SM (1991) Intracellular and extracellular in vivo recording of different response modes for relay cells of the cat's lateral geniculate nucleus. Exp Brain Res 83:317-28 [PubMed] Lu SM, Guido W, Sherman SM (1992) Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2+ conductance. J Neurophysiol 68:2185-98 [Journal] [PubMed] McCormick DA (1989) Cholinergic and noradrenergic modulation of thalamocortical processing. Trends Neurosci 12:215-21 [PubMed] McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68:1384-400 [Journal] [PubMed] McCormick DA, von Krosigk M (1992) Corticothalamic activation modulates thalamic firing through glutamate "metabotropic" receptors. Proc Natl Acad Sci U S A 89:2774-8 [PubMed] Merrill EG, Ainsworth A (1972) Glass-coated platinum-plated tungsten microelectrodes. Med Biol Eng 10:662-72 [PubMed] Mukherjee P, Kaplan E (1995) Dynamics of neurons in the cat lateral geniculate nucleus: in vivo electrophysiology and computational modeling. J Neurophysiol 74:1222-43 [Journal] [PubMed] Press WH, Teukolsky SA, Vellerling WT, Flannery BP (1992) Numerical Recipes In C: The Art Of Scientific Computing Rodieck RW, Smith PS (1966) Slow dark discharge rhythms of cat retinal ganglion cells. J Neurophysiol 29:942-53 [Journal] [PubMed] Scharfman HE, Lu SM, Guido W, Adams PR, Sherman SM (1990) N-methyl-D-aspartate receptors contribute to excitatory postsynaptic potentials of cat lateral geniculate neurons recorded in thalamic slices. Proc Natl Acad Sci U S A 87:4548-52 [PubMed] Teich MC, Heneghan C, Lowen SB, Ozaki T, Kaplan E (1997) Fractal character of the neural spike train in the visual system of the cat. J Opt Soc Am A Opt Image Sci Vis 14:529-46 [PubMed] Troy JB, Robson JG (1992) Steady discharges of X and Y retinal ganglion cells of cat under photopic illuminance. Vis Neurosci 9:535-53 [PubMed] | Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123-35 [Journal] [PubMed]
Hines ML, Carnevale NT (2003) Personal Communication of NEURON bibliography Huertas MA, Groff JR, Smith GD (2005) Feedback inhibition and throughput properties of an integrate-and-fire-or-burst network model of retinogeniculate transmission. J Comput Neurosci 19:147-80 [Journal] [PubMed] Huertas MA, Smith GD (2006) A multivariate population density model of the dLGN/PGN relay. J Comput Neurosci 21:171-89 [Journal] [PubMed] |