References and models cited by this paper | References and models that cite this paper | |||||||||||||
Chono K, Takagi H, Koyama S, Suzuki H, Ito E (2003) A cell model study of calcium influx mechanism regulated by calcium-dependent potassium channels in Purkinje cell dendrites. J Neurosci Methods 129:115-27 [PubMed] Doi T, Kuroda S, Michikawa T, Kawato M (2005) Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neurosci 25:950-61 [Journal] [PubMed]
Gallimore AR, Kim T, Tanaka-Yamamoto K, De Schutter E (2018) Switching On Depression and Potentiation in the Cerebellum. Cell Rep 22:722-733 [Journal] [PubMed]
Garrido JA, Luque NR, D'Angelo E, Ros E (2013) Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation Front. Neural Circuits 7:159:1-20 [Journal] [PubMed]
Hepburn I, Jain A, Gangal H, Yamamoto Y, Tanaka-Yamamoto K, De Schutter E (2017) A model of induction of cerebellar Long-Term Depression including RKIP inactivation of Raf and MEK Frontiers in Molecular Neuroscience [Journal]
Manninen T, Hituri K, Kotaleski JH, Blackwell KT, Linne ML (2010) Postsynaptic signal transduction models for long-term potentiation and depression. Front Comput Neurosci 4:152 [Journal] [PubMed] Steuber V, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Häusser M, De Schutter E (2007) Cerebellar LTD and pattern recognition by Purkinje cells. Neuron 54:121-36 [Journal] [PubMed]
Zamora Chimal CG, De Schutter E (2018) Ca2+ Requirements for Long-Term Depression Are Frequency Sensitive in Purkinje Cells. Front Mol Neurosci 11:438 [Journal] [PubMed]
|