References and models cited by this paper | References and models that cite this paper | |
Bajcsy R, Solina F (1987) Three dimensional object representation revisited Proceedings of the 1st International Conferenceon Computer Vision Bartlett P, Shawe-taylor J (1999) Generalization performance of supportvector machines and other pattern classifiers Advances in Kernel Methods, Support Vector Learning, Scholkpf B:Burges C:Smola A, ed. pp.43 Baum E, Haussler D (1989) What size net gives valid generalization Neural Comput 1:151-160 Benedetti R, Risler J-J (1990) Real Algebraic and Semi-Algebraic Sets Bugmann G (1997) Biologically plausible neural computation. Biosystems 40:11-9 [PubMed] Bullier J (2001) Integrated model of visual processing. Brain Res Brain Res Rev 36:96-107 [PubMed] Burnod Y (1993) An Adaptive Neural Network: The Cerebral Cortex (2nd edition) Carr CE (1993) Processing of temporal information in the brain. Annu Rev Neurosci 16:223-43 [Journal] [PubMed] Chang CC, Lin CJ (2001) Training nu-support vector classifiers: theory and algorithms. Neural Comput 13:2119-47 [Journal] [PubMed] Cover TM, Hart PE (1967) Nearest neighbor pattern classification IEEE Trans Inform Theory 13:21-27 Delorme A, Gautrais J, Vanrullen R, Thorpe SJ (1999) SpikeNET: A simulator for modeling large networks of integrate and fire neurons. Neurocomputing 26:989-996 Delorme A, Richard G, Fabre-Thorpe M (2000) Ultra-rapid categorisation of natural scenes does not rely on colour cues: a study in monkeys and humans. Vision Res 40:2187-200 [PubMed] Delorme A, Thorpe SJ (2003) Face identification using one spike per neuron: resistance to image degradations. Neural Netw 14:795-803 Duda RO, Hart PE, Stork DG (2000) Pattern Classification (2nd edition) Durbin R, Miall C, Mitchinson G (1989) The Computing Neuron Figueiredo MAT, Jain AK (2001) Bayesian learning of sparse classifiers Computer Vision and Pattern Recognition Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2001) Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291:312-6 [Journal] [PubMed] Friess T, Cristianini N, Campbell C (1998) The kernel adatron algorithm:A fast and simple learning procedure for support vector machine Proc. 15th International Conference on Machine Learning Gaspard F, Vieville T (2000) Non linear minimization and visual localization of a plane The 6th International Conference onInformation Systems, Analysis and Synthesis 8:366-371 Gautrais J, Thorpe S (1998) Rate coding versus temporal order coding: a theoretical approach. Biosystems 48:57-65 [PubMed] Gisiger T, Dehaene S, Changeux JP (2000) Computational models of association cortex. Curr Opin Neurobiol 10:250-9 [PubMed] Guermeur Y (2002) Combining discriminant models with newmulti-class SVMs Pattern Anal Appl 5:168-179 Guermeur Y (2002) Asimple unifying theory of multi-class support vector machines Technical Report 4669, INRIA Gutierrez-Galvez A, Gutierrez-Osuna R (2004) Pattern completion through phase coding in population neurodynamics. Neural Netw 16:649-56 Hubel D (1994) Loeil, le Cerveau et la Vision: Les etapes cerebrales du traitement visuel, Lunivers des sciences Pour la science Huerta R, Nowotny T, García-Sanchez M, Abarbanel HD, Rabinovich MI (2004) Learning classification in the olfactory system of insects. Neural Comput 16:1601-40 [Journal] [PubMed] Koiran P, Sontag E (1996) Neural networks with quadratic VC dimension Adv Neural Info Proc Syst 8:197-203 Krauth W, Mezard M (1987) Learning algorithms with optimal stabilityin neural networks J Phis 20:745-752 Marr D (1982) Vision: A Computational Investigation into the Human Representation and Processing of Visual Information Mezard M, Nadal J (1989) Learning in feed forward layered networks:The tiling algorithm J Phys 22:2191-2204 Novak L, Bullier J (1997) The Timing of Information Transfer in the Visual System Cerebral Cortex 12:205-241 Rolls ET, Treves A (1998) Neural networks and brain function. 1st ed. Shawe-taylor J, Bartlett P, Williamson R, Anthony M (1998) Structural risk minimization over data-dependent hierarchies IEEE Trans Info Theory 44:1926-1940 Soo-Young L, Dong-Gyu J (1996) Merging Back-propagation and Hebbian Learning Rules for Robust Classifications. Neural Netw 9:1213-1222 [PubMed] Theodoridis S, Koutroumbas K (1999) Pattern Recognition Thorpe S (2002) Ultra-rapid scene categorization with a wave ofspikes Biologically Motivated Computer Vision 2525:1-15 Thorpe S, Delorme A, Van Rullen R (2001) Spike-based strategies for rapid processing. Neural Netw 14:715-25 [PubMed] Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520-2 [Journal] [PubMed] Thorpe SJ, Fabre-Thorpe M (2001) Neuroscience. Seeking categories in the brain. Science 291:260-3 [PubMed] van Tonder GJ, Ejima Y (2000) Bottom-up clues in target finding: why a Dalmatian may be mistaken for an elephant. Perception 29:149-57 [Journal] [PubMed] Vapnik V (1995) The Nature of Statistical Learning Theory Vapnik V (1998) Statistical Learning Theory Vieville T (2000) Using markers to compensate displacements in MRI volume sequences Technical Report 4054 Vieville T, Lingrand D, Gaspard F (2001) Implementing a multimodel estimation method Int J Comp Vis 44:1 Wilson R, Keil F (1999) The MIT Encyclopedia of the Cognitive Sciences Yu AJ, Giese MA, Poggio TA (2002) Biophysiologically plausible implementations of the maximum operation. Neural Comput 14:2857-81 [Journal] [PubMed] |