Citation Relationships

Viéville T, Crahay S (2004) Using an Hebbian learning rule for multi-class SVM classifiers. J Comput Neurosci 17:271-87 [PubMed]

References and models cited by this paper

References and models that cite this paper

Bajcsy R, Solina F (1987) Three dimensional object representation revisited Proceedings of the 1st International Conferenceon Computer Vision

Bartlett P, Shawe-taylor J (1999) Generalization performance of supportvector machines and other pattern classifiers Advances in Kernel Methods, Support Vector Learning, Scholkpf B:Burges C:Smola A, ed. pp.43

Baum E, Haussler D (1989) What size net gives valid generalization Neural Comput 1:151-160

Benedetti R, Risler J-J (1990) Real Algebraic and Semi-Algebraic Sets

Bugmann G (1997) Biologically plausible neural computation. Biosystems 40:11-9 [PubMed]

Bullier J (2001) Integrated model of visual processing. Brain Res Brain Res Rev 36:96-107 [PubMed]

Burnod Y (1993) An Adaptive Neural Network: The Cerebral Cortex (2nd edition)

Carr CE (1993) Processing of temporal information in the brain. Annu Rev Neurosci 16:223-43 [Journal] [PubMed]

Chang CC, Lin CJ (2001) Training nu-support vector classifiers: theory and algorithms. Neural Comput 13:2119-47 [Journal] [PubMed]

Cover TM, Hart PE (1967) Nearest neighbor pattern classification IEEE Trans Inform Theory 13:21-27

Delorme A, Gautrais J, Vanrullen R, Thorpe SJ (1999) SpikeNET: A simulator for modeling large networks of integrate and fire neurons. Neurocomputing 26:989-996

Delorme A, Richard G, Fabre-Thorpe M (2000) Ultra-rapid categorisation of natural scenes does not rely on colour cues: a study in monkeys and humans. Vision Res 40:2187-200 [PubMed]

Delorme A, Thorpe SJ (2003) Face identification using one spike per neuron: resistance to image degradations. Neural Netw 14:795-803

Duda RO, Hart PE, Stork DG (2000) Pattern Classification (2nd edition)

Durbin R, Miall C, Mitchinson G (1989) The Computing Neuron

Figueiredo MAT, Jain AK (2001) Bayesian learning of sparse classifiers Computer Vision and Pattern Recognition

Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2001) Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291:312-6 [Journal] [PubMed]

Friess T, Cristianini N, Campbell C (1998) The kernel adatron algorithm:A fast and simple learning procedure for support vector machine Proc. 15th International Conference on Machine Learning

Gaspard F, Vieville T (2000) Non linear minimization and visual localization of a plane The 6th International Conference onInformation Systems, Analysis and Synthesis 8:366-371

Gautrais J, Thorpe S (1998) Rate coding versus temporal order coding: a theoretical approach. Biosystems 48:57-65 [PubMed]

Gisiger T, Dehaene S, Changeux JP (2000) Computational models of association cortex. Curr Opin Neurobiol 10:250-9 [PubMed]

Guermeur Y (2002) Combining discriminant models with newmulti-class SVMs Pattern Anal Appl 5:168-179

Guermeur Y (2002) Asimple unifying theory of multi-class support vector machines Technical Report 4669, INRIA

Gutierrez-Galvez A, Gutierrez-Osuna R (2004) Pattern completion through phase coding in population neurodynamics. Neural Netw 16:649-56

Hubel D (1994) Loeil, le Cerveau et la Vision: Les etapes cerebrales du traitement visuel, Lunivers des sciences Pour la science

Huerta R, Nowotny T, García-Sanchez M, Abarbanel HD, Rabinovich MI (2004) Learning classification in the olfactory system of insects. Neural Comput 16:1601-40 [Journal] [PubMed]

Koiran P, Sontag E (1996) Neural networks with quadratic VC dimension Adv Neural Info Proc Syst 8:197-203

Krauth W, Mezard M (1987) Learning algorithms with optimal stabilityin neural networks J Phis 20:745-752

Marr D (1982) Vision: A Computational Investigation into the Human Representation and Processing of Visual Information

Mezard M, Nadal J (1989) Learning in feed forward layered networks:The tiling algorithm J Phys 22:2191-2204

Novak L, Bullier J (1997) The Timing of Information Transfer in the Visual System Cerebral Cortex 12:205-241

Rolls ET, Treves A (1998) Neural networks and brain function. 1st ed.

Shawe-taylor J, Bartlett P, Williamson R, Anthony M (1998) Structural risk minimization over data-dependent hierarchies IEEE Trans Info Theory 44:1926-1940

Soo-Young L, Dong-Gyu J (1996) Merging Back-propagation and Hebbian Learning Rules for Robust Classifications. Neural Netw 9:1213-1222 [PubMed]

Theodoridis S, Koutroumbas K (1999) Pattern Recognition

Thorpe S (2002) Ultra-rapid scene categorization with a wave ofspikes Biologically Motivated Computer Vision 2525:1-15

Thorpe S, Delorme A, Van Rullen R (2001) Spike-based strategies for rapid processing. Neural Netw 14:715-25 [PubMed]

Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520-2 [Journal] [PubMed]

Thorpe SJ, Fabre-Thorpe M (2001) Neuroscience. Seeking categories in the brain. Science 291:260-3 [PubMed]

van Tonder GJ, Ejima Y (2000) Bottom-up clues in target finding: why a Dalmatian may be mistaken for an elephant. Perception 29:149-57 [Journal] [PubMed]

Vapnik V (1995) The Nature of Statistical Learning Theory

Vapnik V (1998) Statistical Learning Theory

Vieville T (2000) Using markers to compensate displacements in MRI volume sequences Technical Report 4054

Vieville T, Lingrand D, Gaspard F (2001) Implementing a multimodel estimation method Int J Comp Vis 44:1

Wilson R, Keil F (1999) The MIT Encyclopedia of the Cognitive Sciences

Yu AJ, Giese MA, Poggio TA (2002) Biophysiologically plausible implementations of the maximum operation. Neural Comput 14:2857-81 [Journal] [PubMed]

(46 refs)