Citation Relationships

Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74:1071-96 [PubMed]

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++)

References and models cited by this paper

References and models that cite this paper

Abete P, Vassalle M (1988) Relation between Na+-K+ pump, Na+ activity and force in strophanthidin inotropy in sheep cardiac Purkinje fibres. J Physiol 404:275-99 [PubMed]

Backx PH, de Tombe PP, Van Deen JH, Mulder BJ, ter Keurs HE (1989) A model of propagating calcium-induced calcium release mediated by calcium diffusion. J Gen Physiol 93:963-77 [PubMed]

Beeler GW, Reuter H (1977) Reconstruction of the action potential of ventricular myocardial fibres. J Physiol 268:177-210 [Journal] [PubMed]

   Mammalian Ventricular Cell (Beeler and Reuter 1977) [Model]

Beuckelmann DJ, Wier WG (1988) Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cells. J Physiol 405:233-55 [PubMed]

Beuckelmann DJ, Wier WG (1989) Sodium-calcium exchange in guinea-pig cardiac cells: exchange current and changes in intracellular Ca2+. J Physiol 414:499-520 [PubMed]

Blatter LA, McGuigan JA, Reverdin EC (1986) Sodium/calcium exchange and calcium buffering in mammalian ventricular muscle. Jpn Heart J 27 Suppl 1:93-107 [PubMed]

Bridge JH, Smolley JR, Spitzer KW (1990) The relationship between charge movements associated with ICa and INa-Ca in cardiac myocytes. Science 248:376-8 [PubMed]

Campbell DL, Giles WR, Hume JR, Noble D, Shibata EF (1988) Reversal potential of the calcium current in bull-frog atrial myocytes. J Physiol 403:267-86

Campbell DL, Giles WR, Hume JR, Shibata EF (1988) Inactivation of calcium current in bull-frog atrial myocytes. J Physiol 403:287-315 [PubMed]

Campbell DL, Giles WR, Robinson K, Shibata EF (1988) Studies of the sodium-calcium exchanger in bull-frog atrial myocytes. J Physiol 403:317-40 [PubMed]

Campbell DL, Giles WR, Shibata EF (1988) Ion transfer characteristics of the calcium current in bull-frog atrial myocytes. J Physiol 403:239-66 [PubMed]

Cannell MB, Allen DG (1984) Model of calcium movements during activation in the sarcomere of frog skeletal muscle. Biophys J 45:913-25 [Journal] [PubMed]

Cannell MB, Berlin JR, Lederer WJ (1987) Effect of membrane potential changes on the calcium transient in single rat cardiac muscle cells. Science 238:1419-23 [PubMed]

Cannell MB, Lederer WJ (1986) The arrhythmogenic current ITI in the absence of electrogenic sodium-calcium exchange in sheep cardiac Purkinje fibres. J Physiol 374:201-19 [PubMed]

Capogrossi MC, Stern MD, Spurgeon HA, Lakatta EG (1988) Spontaneous Ca2+ release from the sarcoplasmic reticulum limits Ca2+-dependent twitch potentiation in individual cardiac myocytes. A mechanism for maximum inotropy in the myocardium. J Gen Physiol 91:133-55 [PubMed]

Caroni P, Zurini M, Clark A, Carafoli E (1983) Further characterization and reconstitution of the purified Ca2+-pumping ATPase of heart sarcolemma. J Biol Chem 258:7305-10 [PubMed]

Cavalié A, McDonald TF, Pelzer D, Trautwein W (1985) Temperature-induced transitory and steady-state changes in the calcium current of guinea pig ventricular myocytes. Pflugers Arch 405:294-6 [PubMed]

Chamberlain BK, Volpe P, Fleischer S (1984) Calcium-induced calcium release from purified cardiac sarcoplasmic reticulum vesicles. General characteristics. J Biol Chem 259:7540-6 [PubMed]

Cohen IS, Datyner NB, Gintant GA, Mulrine NK, Pennefather P (1987) Properties of an electrogenic sodium-potassium pump in isolated canine Purkinje myocytes. J Physiol 383:251-67 [PubMed]

Cohen IS, Kline RP, Pennefather P, Mulrine NK (1987) Models of the Na-K pump in cardiac muscle predict the wrong intracellular Na+ activity. Proc R Soc Lond B Biol Sci 231:371-82 [Journal] [PubMed]

Daut J (1983) Inhibition of the sodium pump in guinea-pig ventricular muscle by dihydro-ouabain: effects of external potassium and sodium. J Physiol 339:643-62 [PubMed]

Daut J (1986) The energetics of the Na, K-pump in cardiac muscle. Membrane Control 338:419-427

Daut J, Rüdel R (1982) The electrogenic sodium pump in guinea-pig ventricular muscle: inhibition of pump current by cardiac glycosides. J Physiol 330:243-64 [PubMed]

Dennis JE, Gay DM, Welsch RE (1981) An adaptive nonlinear leastsquares algorithm ACM Transactions On Mathematical Software 7:348-368

DiFrancesco D, Noble D (1985) A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos Trans R Soc Lond B Biol Sci 307:353-98 [Journal] [PubMed]

   Cardiac action potentials and pacemaker activity of sinoatrial node (DiFrancesco & Noble 1985) [Model]

Doerr T, Denger R, Doerr A, Trautwein W (1990) Ionic currents contributing to the action potential in single ventricular myocytes of the guinea pig studied with action potential clamp. Pflugers Arch 416:230-7 [PubMed]

Droogmans G, Nilius B (1989) Kinetic properties of the cardiac T-type calcium channel in the guinea-pig. J Physiol 419:627-50 [PubMed]

Drouhard JP, Roberge FA (1987) Revised formulation of the Hodgkin-Huxley representation of the sodium current in cardiac cells. Comput Biomed Res 20:333-50 [PubMed]

Ebihara L, Johnson EA (1980) Fast sodium current in cardiac muscle. A quantitative description. Biophys J 32:779-90 [Journal] [PubMed]

Ehara T, Matsuoka S, Noma A (1989) Measurement of reversal potential of Na+-Ca2+ exchange current in single guinea-pig ventricular cells. J Physiol 410:227-49 [PubMed]

Ehara T, Noma A, Ono K (1988) Calcium-activated non-selective cation channel in ventricular cells isolated from adult guinea-pig hearts. J Physiol 403:117-33 [PubMed]

Fabiato A (1985) Rapid ionic modifications during the aequorin-detected calcium transient in a skinned canine cardiac Purkinje cell. J Gen Physiol 85:189-246 [PubMed]

Fabiato A (1985) Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 85:247-89 [PubMed]

Fabiato A (1985) Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 85:291-320 [PubMed]

Forbes MS, Hawkey LA, Jirge SK, Sperelakis N (2004) The sarcoplasmic reticulum of mouse heart: its divisions, configurations, and distribution. J Ultrastruct Res 93:1-16

Forbes MS, Sperelakis N (1989) Ultrastructure of mammalian cardiacmuscle Physiology and Pathophysiology of the Heart. 2nd ed, Sperelakis N, ed. pp.3

Gadsby DC (1990) The Na K pump of cardiac myocytes Cardiac Electrophysiology-From Cell to Bedside, Zipes D:Jalife J, ed. pp.35

Gadsby DC, Nakao M (1989) Steady-state current-voltage relationship of the Na/K pump in guinea pig ventricular myocytes. J Gen Physiol 94:511-37 [PubMed]

Gerdes AM, Kasten FH (1980) Morphometric study of endomyocardium and epimyocardium of the left ventricle in adult dogs. Am J Anat 159:389-94 [Journal] [PubMed]

Gettes LS, Reuter H (1974) Slow recovery from inactivation of inward currents in mammalian myocardial fibres. J Physiol 240:703-24 [PubMed]

Giles W, Shimoni Y (1989) Comparison of sodium-calcium exchanger and transient inward currents in single cells from rabbit ventricle. J Physiol 417:465-81 [PubMed]

Giles WR, Imaizumi Y (1988) Comparison of potassium currents in rabbit atrial and ventricular cells. J Physiol 405:123-45 [PubMed]

Hadley RW, Hume JR (1987) An intrinsic potential-dependent inactivation mechanism associated with calcium channels in guinea-pig myocytes. J Physiol 389:205-22 [PubMed]

Harvey RD, Clark CD, Hume JR (1990) Chloride current in mammalian cardiac myocytes. Novel mechanism for autonomic regulation of action potential duration and resting membrane potential. J Gen Physiol 95:1077-102 [PubMed]

Haynes DH, Mandveno A (1987) Computer modeling of Ca2+ pump function of Ca2+-Mg2+-ATPase of sarcoplasmic reticulum. Physiol Rev 67:244-84 [Journal] [PubMed]

Hess P, Lansman JB, Tsien RW (1986) Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J Gen Physiol 88:293-319 [PubMed]

Hilgemann DW, Noble D (1987) Excitation-contraction coupling and extracellular calcium transients in rabbit atrium: reconstruction of basic cellular mechanisms. Proc R Soc Lond B Biol Sci 230:163-205 [Journal] [PubMed]

HODGKIN AL, HUXLEY AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-44 [Journal] [PubMed]

   Squid axon (Hodgkin, Huxley 1952) (LabAXON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (NEURON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SNNAP) [Model]
   Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other) [Model]

Horie M, Irisawa H, Noma A (1987) Voltage-dependent magnesium block of adenosine-triphosphate-sensitive potassium channel in guinea-pig ventricular cells. J Physiol 387:251-72 [PubMed]

Hume JR, Uehara A (1985) Ionic basis of the different action potential configurations of single guinea-pig atrial and ventricular myocytes. J Physiol 368:525-44 [PubMed]

Inui M, Wang S, Saito A, Fleischer S (1988) Characterization of junctional and longitudinal sarcoplasmic reticulum from heart muscle. J Biol Chem 263:10843-50 [PubMed]

Isenberg G, Klockner U (1982) Calcium tolerant ventricular myocytes prepared by preincubation in a "KB medium". Pflugers Arch 395:6-18

Jorgensen AO, Broderick R, Somlyo AP, Somlyo AV (1988) Two structurally distinct calcium storage sites in rat cardiac sarcoplasmic reticulum: an electron microprobe analysis study. Circ Res 63:1060-9 [PubMed]

Josephson IR, Sanchez-Chapula J, Brown AM (1984) A comparison of calcium currents in rat and guinea pig single ventricular cells. Circ Res 54:144-56 [PubMed]

Kamp TJ, Sanguinetti MC, Miller RJ (1989) Voltage- and use-dependent modulation of cardiac calcium channels by the dihydropyridine (+)-202-791. Circ Res 64:338-51 [PubMed]

Kass RS, Sanguinetti MC (1984) Inactivation of calcium channel current in the calf cardiac Purkinje fiber. Evidence for voltage- and calcium-mediated mechanisms. J Gen Physiol 84:705-26 [PubMed]

Kawano S, Lee CJ, Coronado R (1990) Ca2+ dependent activation andinactivation of Ca 2+ release channels in the sarcoplasmic reticulum of cardiac and skeletal muscle J Moll Cell Cardiol 22:90

Kimura J, Miyamae S, Noma A (1987) Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol 384:199-222 [PubMed]

Lagnado L, McNaughton PA (1990) Electrogenic properties of the Na:Ca exchange. J Membr Biol 113:177-91 [PubMed]

Leblanc N, Hume JR (1990) Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248:372-6 [PubMed]

Lee KS, Marban E, Tsien RW (1985) Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J Physiol 364:395-411 [PubMed]

Lipp P, Pott L (1988) Transient inward current in guinea-pig atrial myocytes reflects a change of sodium-calcium exchange current. J Physiol 397:601-30 [PubMed]

Luk HN, Carmeliet E (1990) Na(+)-activated K+ current in cardiac cells: rectification, open probability, block and role in digitalis toxicity. Pflugers Arch 416:766-8 [PubMed]

Luo CH, Rudy Y (1991) A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ Res 68:1501-26 [PubMed]

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]
   Cardiac action potential based on Luo-Rudy phase 1 model (Luo and Rudy 1991), (Wu 2004) [Model]

Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ Res 74:1097-113 [PubMed]

   Ventricular cell model (Luo Rudy dynamic model) (Luo Rudy 1994) used in (Wang et al 2006) (XPP) [Model]
   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]

Malécot CO, Trautwein W (1987) On the relationship between V max of slow responses and Ca-current availability in whole-cell clamped guinea pig heart cells. Pflugers Arch 410:15-22 [PubMed]

Markwardt F, Nilius B (1988) Modulation of calcium channel currents in guinea-pig single ventricular heart cells by the dihydropyridine Bay K 8644. J Physiol 399:559-75 [PubMed]

Mathias RT, Eisenberg B, Datyner NB, Cohen IS (1985) Impedance and morphology of isolated canine cardiac Purkinje myocytes: comparison with intact strand preparations Biophys J 47:499

Matsuura H, Ehara T, Imoto Y (1987) An analysis of the delayed outward current in single ventricular cells of the guinea-pig. Pflugers Arch 410:596-603 [PubMed]

McDonald TF, Cavalié A, Trautwein W, Pelzer D (1986) Voltage-dependent properties of macroscopic and elementary calcium channel currents in guinea pig ventricular myocytes. Pflugers Arch 406:437-48 [PubMed]

Meissner G, Henderson JS (1987) Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J Biol Chem 262:3065-73 [PubMed]

Mogul DJ, Singer DH, Ten Eick RE (1990) Dependence of Na-K pump current on internal Na+ in mammalian cardiac myocytes. Am J Physiol 259:H488-96 [Journal] [PubMed]

Mulder BJ, de Tombe PP, ter Keurs HE (1989) Spontaneous and propagated contractions in rat cardiac trabeculae. J Gen Physiol 93:943-61 [PubMed]

Mullins LJ (1977) A mechanism for Na/Ca transport. J Gen Physiol 70:681-95 [PubMed]

Nakao M, Gadsby DC (1989) [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes. J Gen Physiol 94:539-65 [PubMed]

Pelzer D, Cavalie A, Mcdonald TF, Trautwein W (1989) Calcium channels in single heart cells Isolated Adult Cardiomyocytes, Piper HM:Isenberg G, ed. pp.29

Priori SG, Corr PB (1990) Mechanisms underlying early and delayed afterdepolarizations induced by catecholamines. Am J Physiol 258:H1796-805 [Journal] [PubMed]

Quan W, Rudy Y (1990) Unidirectional block and reentry of cardiac excitation: a model study. Circ Res 66:367-82 [PubMed]

Rardon DP, Cefali DC, Mitchell RD, Seiler SM, Jones LR (1989) High molecular weight proteins purified from cardiac junctional sarcoplasmic reticulum vesicles are ryanodine-sensitive calcium channels. Circ Res 64:779-89 [PubMed]

Rasmusson RL, Clark JW, Giles WR, Robinson K, Clark RB, Shibata EF, Campbell DL (1990) A mathematical model of electrophysiological activity in a bullfrog atrial cell. Am J Physiol 259:H370-89 [Journal] [PubMed]

Robertson SP, Johnson JD, Potter JD (1981) The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys J 34:559-69 [Journal] [PubMed]

Robinson RB, Boyden PA, Hoffman BF, Hewett KW (1987) Electrical restitution process in dispersed canine cardiac Purkinje and ventricular cells. Am J Physiol 253:H1018-25 [Journal] [PubMed]

Rudy Y, Quan W (1991) Propagation delays across gap junctions andtheir reflection in extracellular potentials: a simulation study J Cardiovasc Electrophysiol 2:299-315

Rudy Y, Quan WL (1987) A model study of the effects of the discrete cellular structure on electrical propagation in cardiac tissue. Circ Res 61:815-23 [PubMed]

Rush S, Larsen H (1978) A practical algorithm for solving dynamic membrane equations. IEEE Trans Biomed Eng 25:389-92 [Journal] [PubMed]

Sakmann B, Trube G (1984) Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol 347:641-57 [PubMed]

Sanguinetti MC, Jurkiewicz NK (1991) Delayed rectifier outward K+ current is composed of two currents in guinea pig atrial cells. Am J Physiol 260:H393-9 [Journal] [PubMed]

Schaper J, Meiser E, Stämmler G (1985) Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res 56:377-91 [PubMed]

Sejersted OM, Wasserstrom JA, Fozzard HA (1988) Na,K pump stimulation by intracellular Na in isolated, intact sheep cardiac Purkinje fibers. J Gen Physiol 91:445-66 [PubMed]

Severs NJ, Slade AM, Powell T, Twist VW, Jones GE (1985) Morphometric analysis of the isolated calcium-tolerant cardiac myocyte. Organelle volumes, sarcomere length, plasma membrane surface folds, and intramembrane particle density and distribution. Cell Tissue Res 240:159-68 [PubMed]

Sheu SS, Fozzard HA (1982) Transmembrane Na+ and Ca2+ electrochemical gradients in cardiac muscle and their relationship to force development. J Gen Physiol 80:325-51 [PubMed]

Standen NB, Stanfield PR (1982) A binding-site model for calcium channel inactivation that depends on calcium entry. Proc R Soc Lond B Biol Sci 217:101-10 [Journal] [PubMed]

Stern MD, Capogrossi MC, Lakatta EG (1988) Spontaneous calcium release from the sarcoplasmic reticulum in myocardial cells: mechanisms and consequences. Cell Calcium 9:247-56 [PubMed]

Stimers JR, Shigeto N, Lieberman M (1990) Na/K pump current in aggregates of cultured chick cardiac myocytes. J Gen Physiol 95:61-76 [PubMed]

Tada M, Shigekawa M, Kadoma M, Nimura Y (1989) Uptake of calciumby sarcoplasmic reticulum and its regulation and functional consequences Physiology and Pathophysiology of the Heart. 2nd ed, Sperelakis N, ed. pp.267

Takamatsu T, Wier WG (1990) Calcium waves in mammalian heart: quantification of origin, magnitude, waveform, and velocity. FASEB J 4:1519-25 [PubMed]

Tohse N (1990) Calcium-sensitive delayed rectifier potassium current in guinea pig ventricular cells. Am J Physiol 258:H1200-7 [Journal] [PubMed]

Victorri B, Vinet A, Roberge FA, Drouhard JP (1985) Numerical integration in the reconstruction of cardiac action potentials using Hodgkin-Huxley-type models. Comput Biomed Res 18:10-23 [PubMed]

Weidmann S (1970) Electrical constants of trabecular muscle from mammalian heart. J Physiol 210:1041-54 [PubMed]

Wier WG, Beuckelmann DJ (1989) Sodium-calcium exchange in mammalian heart: current-voltage relation and intracellular calcium concentration. Mol Cell Biochem 89:97-102 [PubMed]

Wier WG, Yue DT (1986) Intracellular calcium transients underlying the short-term force-interval relationship in ferret ventricular myocardium. J Physiol 376:507-30 [PubMed]

Wong AYK, Fabiato A, Bassingthwaighte JB (1987) Model of Carelease mechanism from the sarcoplasmic reticulum: Camediated activation, inactivation and reactivation Activation, Metabolism and Perfusion of the Heart, Sideman S:Beyar R, ed. pp.281

Yasui K, Kimura J (1990) Is potassium co-transported by the cardiac Na-Ca exchange? Pflugers Arch 415:513-5 [PubMed]

Yue DT, Backx PH, Imredy JP (1990) Calcium-sensitive inactivation in the gating of single calcium channels. Science 250:1735-8 [PubMed]

Yue DT, Burkhoff D, Franz MR, Hunter WC, Sagawa K (1985) Postextrasystolic potentiation of the isolated canine left ventricle. Relationship to mechanical restitution. Circ Res 56:340-50 [PubMed]

Bartocci E, Corradini F, Entcheva E, Grosu R, Smolka SA (2008) CellExcite: an efficient simulation environment for excitable cells BMC Bioinformatics 9(Suppl 2):S3 [Journal]

   CellExcite: an efficient simulation environment for excitable cells (Bartocci et al. 2008) [Model]

Clancy CE, Kass RS (2004) Theoretical investigation of the neuronal Na+ channel SCN1A: abnormal gating and epilepsy. Biophys J 86:2606-14 [Journal] [PubMed]

   Markov models of SCN1A (NaV1.1) applied to abnormal gating and epilepsy (Clancy and Kass 2004) [Model]

Clancy CE, Rudy Y (1999) Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 400:566-9 [Journal] [PubMed]

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]

Clancy CE, Rudy Y (2001) Cellular consequences of HERG mutations in the long QT syndrome: precursors to sudden cardiac death. Cardiovasc Res 50:301-13 [PubMed]

   Consequences of HERG mutations in the long QT syndrome (Clancy, Rudy 2001) [Model]

Clancy CE, Rudy Y (2002) Na(+) channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. Circulation 105:1208-13 [PubMed]

   Markovian model for cardiac sodium channel (Clancy, Rudy 2002) [Model]

Cortassa S, Aon MA, Marbán E, Winslow RL, O'Rourke B (2003) An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 84:2734-55 [Journal] [PubMed]

   Excitation-contraction coupling/mitochondrial energetics (ECME) model (Cortassa et al. 2006) [Model]

Courtemanche M, Ramirez RJ, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol 275:H301-21 [Journal] [PubMed]

   Cardiac Atrial Cell (Courtemanche et al 1998) [Model]
   Cardiac Atrial Cell (Courtemanche et al 1998) (C++) [Model]

Faber GM, Rudy Y (2000) Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophys J 78:2392-404 [Journal] [PubMed]

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]

Flaim SN, Giles WR, McCulloch AD (2006) Contributions of sustained INa and IKv43 to transmural heterogeneity of early repolarization and arrhythmogenesis in canine left ventricular myocytes. Am J Physiol Heart Circ Physiol 291:H2617-29 [Journal] [PubMed]

   INa and IKv4.3 heterogeneity in canine LV myocytes (Flaim et al 2006) [Model]

Fox JJ, McHarg JL, Gilmour RF (2002) Ionic mechanism of electrical alternans. Am J Physiol Heart Circ Physiol 282:H516-30 [Journal] [PubMed]

   Ionic basis of alternans and Timothy Syndrome (Fox et al. 2002), (Zhu and Clancy 2007) [Model]

Greenstein JL, Hinch R, Winslow RL (2006) Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte. Biophys J 90:77-91 [Journal] [PubMed]

   Excitation-contraction coupling in an integrative heart cell model (Greenstein et al 2006) [Model]

Greenstein JL, Winslow RL (2002) An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release. Biophys J 83:2918-45 [Journal] [PubMed]

Greenstein JL, Wu R, Po S, Tomaselli GF, Winslow RL (2000) Role of the calcium-independent transient outward current I(to1) in shaping action potential morphology and duration. Circ Res 87:1026-33 [PubMed]

   Kv4.3, Kv1.4 encoded K(+) channel in heart cells (Greenstein et al 2000) (XPP) [Model]
   Kv4.3, Kv1.4 encoded K channel in heart cells & tachy. (Winslow et al 1999, Greenstein et al 2000) [Model]

Hinch R, Greenstein JL, Tanskanen AJ, Xu L, Winslow RL (2004) A simplified local control model of calcium-induced calcium release in cardiac ventricular myocytes. Biophys J 87:3723-36 [Journal] [PubMed]

Hund TJ, Rudy Y (2004) Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation 110:3168-74 [Journal] [PubMed]

   A dynamic model of the canine ventricular myocyte (Hund, Rudy 2004) [Model]

Iyer V, Mazhari R, Winslow RL (2004) A computational model of the human left-ventricular epicardial myocyte. Biophys J 87:1507-25 [Journal] [PubMed]

Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ Res 74:1097-113 [PubMed]

   Ventricular cell model (Luo Rudy dynamic model) (Luo Rudy 1994) used in (Wang et al 2006) (XPP) [Model]
   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]

Mahajan A, Shiferaw Y, Sato D, Baher A, Olcese R, Xie LH, Yang MJ, Chen PS, Restrepo JG, Karma A, Garfinkel A, Qu Z, Weiss JN (2008) A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophys J 94:392-410 [Journal] [PubMed]

Matsuoka S, Sarai N, Kuratomi S, Ono K, Noma A (2003) Role of individual ionic current systems in ventricular cells hypothesized by a model study. Jpn J Physiol 53:105-23 [PubMed]

   Markovian model for single-channel recordings of Ik_1 in ventricular cells (Matsuoka et al 2003) [Model]

Østby I, Øyehaug L, Einevoll GT, Nagelhus EA, Plahte E, Zeuthen T, Lloyd CM, Ottersen OP, Omholt SW (2009) Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space. PLoS Comput Biol 5:e1000272 [Journal] [PubMed]

   Mechanisms of extraneuronal space shrinkage (Ostby et al 2009) [Model]

Puglisi JL, Bers DM (2001) LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. Am J Physiol Cell Physiol 281:C2049-60 [Journal] [PubMed]

   A cardiac cell simulator (Puglisi and Bers 2001), applied to the QT interval (Busjahn et al 2004) [Model]

Shaw RM, Rudy Y (1997) Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration. Cardiovasc Res 35:256-72 [PubMed]

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]

Song W, Xiao Y, Chen H, Ashpole NM, Piekarz AD, Ma P, Hudmon A, Cummins TR, Shou W (2012) The human Nav1.5 F1486 deletion associated with long QT syndrome leads to impaired sodium channel inactivation and reduced lidocaine sensitivity. J Physiol 590:5123-39 [Journal] [PubMed]

Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH, Sanguinetti MC, Keating MT (2005) Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A 102:8089-96; discussion 8086-8 [Journal] [PubMed]

Sung RJ, Wu SN, Wu JS, Chang HD, Luo CH (2006) Electrophysiological mechanisms of ventricular arrhythmias in relation to Andersen-Tawil syndrome under conditions of reduced IK1: a simulation study. Am J Physiol Heart Circ Physiol 291:H2597-605 [Journal] [PubMed]

   Simulation study of Andersen-Tawil syndrome (Sung et al 2006) [Model]

Viswanathan PC, Rudy Y (1999) Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. Cardiovasc Res 42:530-42 [PubMed]

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]

Viswanathan PC, Rudy Y (2000) Cellular arrhythmogenic effects of congenital and acquired long-QT syndrome in the heterogeneous myocardium. Circulation 101:1192-8 [PubMed]

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]

Viswanathan PC, Shaw RM, Rudy Y (1999) Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study. Circulation 99:2466-74 [PubMed]

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]

Wang YJ, Sung RJ, Lin MW, Wu SN (2006) Contribution of BK(Ca)-channel activity in human cardiac fibroblasts to electrical coupling of cardiomyocytes-fibroblasts. J Membr Biol 213:175-85 [Journal] [PubMed]

   Ventricular cell model (Luo Rudy dynamic model) (Luo Rudy 1994) used in (Wang et al 2006) (XPP) [Model]
   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]

Willms AR (2002) NEUROFIT: software for fitting Hodgkin-Huxley models to voltage-clamp data. J Neurosci Methods 121:139-50 [PubMed]

   NEUROFIT: fitting HH models to voltage clamp data (Willms 2002) [Model]

Winslow RL, Cortassa S, Greenstein JL (2005) Using models of the myocyte for functional interpretation of cardiac proteomic data. J Physiol 563:73-81 [Journal] [PubMed]

Winslow RL, Greenstein JL (2004) The ongoing journey to understand heart function through integrative modeling. Circ Res 95:1135-6 [Journal] [PubMed]

Winslow RL, Rice J, Jafri S, Marbán E, O'Rourke B (1999) Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ Res 84:571-86 [PubMed]

   Kv4.3, Kv1.4 encoded K channel in heart cells & tachy. (Winslow et al 1999, Greenstein et al 2000) [Model]

Wu SN (2004) Simulations of the cardiac action potential based on the Hodgkin-Huxley kinetics with the use of Microsoft Excel spreadsheets. Chin J Physiol 47:15-22 [PubMed]

   Cardiac action potential based on Luo-Rudy phase 1 model (Luo and Rudy 1991), (Wu 2004) [Model]

Zeng J, Laurita KR, Rosenbaum DS, Rudy Y (1995) Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization. Circ Res 77:140-52 [PubMed]

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]

Zeng J, Rudy Y (1995) Early afterdepolarizations in cardiac myocytes: mechanism and rate dependence. Biophys J 68:949-64 [Journal] [PubMed]

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]

Zhu ZI, Clancy CE (2007) L-type Ca2+ channel mutations and T-wave alternans: a model study. Am J Physiol Heart Circ Physiol 293:H3480-9 [Journal] [PubMed]

   Ionic basis of alternans and Timothy Syndrome (Fox et al. 2002), (Zhu and Clancy 2007) [Model]

(142 refs)