References and models cited by this paper | References and models that cite this paper | |||||||||||
Bal R, Oertel D (2000) Hyperpolarization-activated, mixed-cation current (I(h)) in octopus cells of the mammalian cochlear nucleus. J Neurophysiol 84:806-17 [Journal] [PubMed]
Carney LH, Heinz MG, Evilsizer ME, Gilkey RH, Colburn HS (2002) Auditory Phase Opponency: A Temporal Model for Masked Detection at Low Frequencies Acta Acustica united with Acustica 88:334-347 [Journal]
Kalluri S, Delgutte B (2003) Mathematical models of cochlear nucleus onset neurons: I. Point neuron with many weak synaptic inputs. J Comput Neurosci 14:71-90 [PubMed] Kalluri S, Delgutte B (2003) Mathematical models of cochlear nucleus onset neurons: II. model with dynamic spike-blocking state. J Comput Neurosci 14:91-110 [PubMed] Kanold PO, Manis PB (2001) A physiologically based model of discharge pattern regulation by transient K+ currents in cochlear nucleus pyramidal cells. J Neurophysiol 85:523-38 [Journal] [PubMed]
Rothman JS, Manis PB (2003) Differential expression of three distinct potassium currents in the ventral cochlear nucleus. J Neurophysiol 89:3070-82 [Journal] [PubMed]
Rudnicki M, Hemmert W (2017) High Entrainment Constrains Synaptic Depression Levels of an In vivo Globular Bushy Cell Model. Front Comput Neurosci 11:16 [Journal] [PubMed]
Tsuchitani C (1997) Input from the medial nucleus of trapezoid body to an interaural level detector. Hear Res 105:211-24 [PubMed] |