References and models cited by this paper | References and models that cite this paper | |||||||||||||
Carver S, Roth E, Cowan NJ, Fortune ES (2008) Synaptic plasticity can produce and enhance direction selectivity. PLoS Comput Biol 4:e32 [Journal] [PubMed]
Chessa M, Solari F (2018) A Computational Model for the Neural Representation and Estimation of the Binocular Vector Disparity from Convergent Stereo Image Pairs International Journal of Neural Systems 0:1850029 [Journal]
Dimitrov AG, Gedeon T (2006) Effects of stimulus transformations on estimates of sensory neuron selectivity. J Comput Neurosci 20:265-83 [Journal] [PubMed] Gabbiani F, Cox SJ (2010) Mathematics for Neuroscientists :1-486 [Journal]
Goldwyn JH, Rubinstein JT, Shea-Brown E (2012) A point process framework for modeling electrical stimulation of the auditory nerve. J Neurophysiol 108:1430-52 [Journal] [PubMed]
McFarland JM, Cui Y, Butts DA (2013) Inferring nonlinear neuronal computation based on physiologically plausible inputs. PLoS Comput Biol 9:e1003143 [Journal] [PubMed]
Mensi S, Naud R, Pozzorini C, Avermann M, Petersen CC, Gerstner W (2012) Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. J Neurophysiol 107:1756-75 [Journal] [PubMed]
Paninski L (2006) The most likely voltage path and large deviations approximations for integrate-and-fire neurons. J Comput Neurosci 21:71-87 [Journal] [PubMed] Paninski L (2006) The spike-triggered average of the integrate-and-fire cell driven by gaussian white noise. Neural Comput 18:2592-616 [Journal] [PubMed] Truccolo W, Donoghue JP (2007) Nonparametric modeling of neural point processes via stochastic gradient boosting regression. Neural Comput 19:672-705 [Journal] [PubMed] |