Citation Relationships



Mollah MNH, Minami M, Eguchi S (2005) Exploring Latent Structure of Mixture ICA Models by the Minimum ß-Divergence Method Neural Comput 18:166-190

References and models cited by this paper

References and models that cite this paper

Amari S, Cardoso JF (1997) Blind source separation-Semi-parametric statistical approach IEEE Trans On Signal Processing 45:2692-2700

Amari SL, Cichocki A, Yang HH (1996) A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems., Touretzky D:Mozer M:Hasselmo M, ed. pp.757

Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129-59 [PubMed]

Cardoso JF, Souloumiac A (1993) Blind beamforming for non-gaussian signals Proc IEEE 140:362-370

Eguchi S, Kano Y (2001) Robustifying maximum likelihood estimation (Research memorandum 802)

Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning

Hyvarinen A, Karunen J, Oja E (2001) Independent component analysis

Jutten C, Herault J (1991) Blind separation of sources. Part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing 24:1-10

Lee TW (2001) Independent component analysis: Theory and applications

Lee TW, Girolami M, Sejnowski TJ (1999) Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput 11:417-41 [PubMed]

Lee TW, Lewicki MS (2000) The generalized gaussian mixture model using ICA Proc. International Workshop on Independent Component Analysis :239-244

Lee TW, Lewicki MS, Sejnowski TJ (2000) ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation IEEE Trans On Pattern Analysis An Machine Int 22:1078-1089

Mclachlan GJ, Peel D (2000) Finite mixture models

Mihoko M, Eguchi S (2002) Robust blind source separation by beta divergence. Neural Comput 14:1859-86 [Journal] [PubMed]

Minami M, Eguchi S (2003) Adaptive selection for minimum ß-divergence method. Proceedings of ICA-2003 Conference

Nocedal J (1992) Theory of algorithms for unconstrained optimization

(16 refs)