Citation Relationships

Hochreiter S, Obermayer K (2006) Support vector machines for dyadic data. Neural Comput 18:1472-510 [PubMed]

References and models cited by this paper

References and models that cite this paper

Ahlgren P, Jarneving B, Rousseau R (2003) Requirements for a cocitation similarity measure with special reference to Pearson's correlation coefficient J Am Soc Inf Sci Tech 54:550-560

Bayer AE, Smart JC, Mclaughlin GW (1990) Mapping intellectual structure of a scientific subfield through author cocitations J Am Soc Inf Sci 41:444-452

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing Jr Stat Soc Ser B 57:289-300

Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency Ann Stat 29:1165-1188

Blum AL, Langley P (1997) Selection of relevant feature and examples in machine learning Art Intell 97:245-271

Califano A, Stolovitzky G, Tu Y (1999) Analysis of gene expression microarrays for phenotype classification Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology :75-85

Chu W, Keerthi SS, Ong CJ (2004) Bayesian support vector regression using a unified loss function. IEEE Trans Neural Netw 15:29-44 [Journal] [PubMed]

Graepel T, Herbrich R, Bollmann-Sdorra P, Obermayer K (1999) Classification on pairwise proximity data Advances in neural information processing systems 11:438-444

Guyon I, Elisseeff A (2003) An introduction to variable and feature selection J Mach Learn Res 3:1157-1182

Herbrich R, Graepel T, Obermayer K (2000) Large margin rank boundaries for ordinal regression Advances in large margin classifiers, Smola A:Bartlett P:Scholkopf B:Schuurmans D, ed.

Heyer LJ, Kruglyak S, Yooseph S (1999) Exploring expression data: identification and analysis of coexpressed genes. Genome Res 9:1106-15 [PubMed]

Hochreiter S, Mozer MC, Obermayer K (2003) Coulomb classifiers: Generalizing support vector machines via an analogy to electrostatic systems Advances in neural information processing systems, Becker S:Thrun S:Obermayer K, ed. pp.545

Hochreiter S, Obermayer K (2004) Classification, regression, and feature selection on matrix data Tech. Rep. No. 2004-2

Hochreiter S, Obermayer K (2004) Gene selection for microarray data Kernel methods in computational biology, Scholkopf B:Tsuda K:Vert JP, ed. pp.319

Hochreiter S, Obermayer K (2004) Sphered support vector machine Tech Rep

Hochreiter S, Obermayer K (2005) Nonlinear feature selection with the potential support vector machine Feature extraction, foundations and applications, Guyon I:Gunn S:Nikravesh M:Zadeh L, ed.

Hoff PD (2005) Bilinear mixed-effects models for dyadic data J Am Stat Assoc 100:286-295

Hofmann T, Buhmann JM (1997) Pairwise data clustering by deterministic annealing IEEE Transactions On Pattern Analysis And Machine Intelligen 19:1-25

Hofmann T, Puzicha J (1998) Unsupervised learning from dyadic data Tech. Rep. No. TR-98-042

Kleinberg JM (1999) Authoritative sources in a hyperlinked environment J Assoc Comput Mach 46:604-632

Kohavi R, John GH (1996) Wrappers for feature subset selection Artificial Intelligence 97:273-324

Li H, Loken E (2002) A unified theory of statistical analysis and inference for variance component models for dyadic data Statistica Sinica 12:519-535

Lysov Y, Florentev V, Khorlin A, Khrapko K, Shik V, Mirzabekov A (1988) DNA sequencing by hybridization with oligonucleotides Doklady Academy Nauk USSR 303:1508-1511

Mangasarian OL (1998) Generalized support vector machines Tech. Rep. No. 98-14

Mika S, Ratsch G, Weston J, Scholkopf B, Muller KR (1999) Fisher discriminant analysis with kernels Neural networks for signal processing IX, Hu YH:Larson J:Wilson E:Douglas S, ed. pp.41

Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JY, Goumnerova LC, Black PM, Lau C, Allen JC, Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califano A, Stolovitzky G, Louis DN, Mesirov JP, Lander ES, Golub TR (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436-42 [Journal] [PubMed]

Ratsch G, Onoda T, Muller KR (2001) Soft margins for AdaBoost Mach Learn 42:287-320

Salton G (1968) Automatic information organization and retrieval

Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, And (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet 24:236-44

Scholkopf B, Shawe-Taylor J, Smola AJ, Williamson RC (1999) Generalization bounds via eigenvalues of the gram matrix Tech. Rep. No. NC2-TR-1999-035

Scholkopf B, Smola AJ (2001) Learning with kernels: Support vector machines, regularization, optimization, and beyond

Shawe-taylor J, Bartlett P, Williamson R, Anthony M (1998) Structural risk minimization over data-dependent hierarchies IEEE Trans Info Theory 44:1926-1940

Shawe-Taylor J, Bartlett PL, Williamson R, Anthony M (1996) A framework for structural risk minimization Proceedings Of The 9th Annual Conference On Computational Learning Theory :68-76

Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A, Lister TA, Mesirov J, Neuberg DS, Lander ES, Aster JC, Golub TR (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8:68-74 [Journal] [PubMed]

Vapnik V (1998) Statistical Learning Theory

Werner D (2000) Funktional analysis (3rd ed)

White HD, Mccain KW (1989) Bibliometrics Ann Rev Inf Sci Tech 24:119-186

Knebel T, Hochreiter S, Obermayer K (2008) An SMO algorithm for the potential support vector machine. Neural Comput 20:271-87 [Journal] [PubMed]

(38 refs)