Citation Relationships



Zhang K, Chan LW (2005) Extended Gaussianization Method for Blind Separation of Post-Nonlinear Mixtures Neural Comput 17:425-452

References and models cited by this paper

References and models that cite this paper

Abramowitz M, Stegun IA (1968) Handbook of mathematical functions

Amari S (1998) Natural gradient works efficiently in learning Neural Comput 10:251-276

Amari S, Cardoso JF (1997) Blind source separation-Semi-parametric statistical approach IEEE Trans On Signal Processing 45:2692-2700

Amari SL, Cichocki A, Yang HH (1996) A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems., Touretzky D:Mozer M:Hasselmo M, ed. pp.757

Attias H (1999) Independent factor analysis. Neural Comput 11:803-51 [PubMed]

Bell AJ (2003) The co-information lattice Proc ICA2003 (Japan) :921-926

Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129-59 [PubMed]

Belouchrani A, Karim AM, Cardoso JF, Moulines E (1997) A blind source separation technique using second-order statistics IEEE Trans Signal Processing 45:434-443

Breiman L, Friedman J (1985) Estimating optimal transformations for multiple regression and correlation J Am Stat Assoc 80:580-598

Cardoso JF (1997) Infomax and maximum likelihood for source separation IEEE Letters On Signal Processing 4:112-114

Cardoso JF (1998) Blind source separation: Statistical principles Proc IEEE 86:2009-2025

Cardoso JF, Laheld B (1996) Equivalent adaptive source separation. IEEE Trans Signal Proc 44:3017-3030

Cardoso JF, Souloumiac A (1993) Blind beamforming for non-gaussian signals Proc IEEE 140:362-370

Chen SS, Gopinath RA (2001) Gaussianization Advances in neural information processing systems, Leen TK:Dietterich TG:Tresp V, ed. pp.423

Comon P (1994) Independent component analysis, a new concept? Signal Processing 36:287-314

Cornish EA, Fisher RA (1937) Moments and cumulants in the specification of distributions Review Of The International Statistical Institute 5:307-320

Cover TM, Thomas JA (1991) Elements of Information Theory

Gill PE, Murray W, Wright MH (1981) Practical optimization

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators Neural Networks 2:359-366

Hyvarinen A (1999) Survey on Independent Component Analysis Neural Computing Surveys 2:94-128

Hyvärinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 10:626-34 [Journal] [PubMed]

Hyvarinen A, Karunen J, Oja E (2001) Independent component analysis

Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13:411-30 [PubMed]

Hyvärinen A, Pajunen P (1999) Nonlinear independent component analysis: Existence and uniqueness results. Neural Netw 12:429-439 [PubMed]

Jaschke SR (2002) The Cornish-Fisher expansion in the context of delta-gamma-normal approximations Journal Of Risk 4:33-52

Johnson NL, Kotz S (1970) Continuous univariate distributions

Jutten C, Herault J (1991) Blind separation of sources. Part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing 24:1-10

Jutten C, Taleb A (2000) Source separation: From dusk till dawn 2nd International Workshop on Independent Component Analysis and Blind Signal Separation (ICA 2000) :15-26

Lee TW, Girolami M, Sejnowski TJ (1999) Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput 11:417-41 [PubMed]

Lee TW, Koehler B, Orglmeister R (1997) Blind separation of nonlinear mixing models IEEE International Workshop on Neural Networks for Signal Processing :406-415

Mansour A, Barros A, Ohnishi N (2000) Blind separation of sources: Methods, assumptions and applications IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Special Section on Digital Signal Processing in IEICE EA E83:1498-1512

Neuts MF (1995) Advanced probability theory (2nd ed), Neuts MF, ed.

Oja E (1997) The nonlinear PCA learning rule and signal separation: Mathematical analysis Neurocomputing 17:25-46

Pham DT (2000) Blind separation of instantaneous mixture of sources based on order statistics IEEE Trans On Signal Processing 48:363-375

Pham DT (2002) Mutual information approach to blind separation of stationary sources IEEE Trans Information Theory 48:1935-1946

Pham DT, Garat P (1997) Blind separation of mixture of independent sources through a quasi-maximum likelihood approach IEEE Trans On Signal Processing 45:1712-1725

Sol-casals J, Babaie-zadeh M, Jutten C, Pham DT (2003) Improving algorithm speed in PNL mixture separation and Wiener system inversion Proc ICA2003 :639-644

Taleb A, Jutten C (1997) Nonlinear source separation: The post-nonlinear mixtures Proc ESANN :179-284

Taleb A, Jutten C (1999) Batch algorithm for source separation in post-nonlinear mixtures Proc. First Int. Workshop on Independent Component Analysis and Signal Separation (ICA99) :155-160

Taleb A, Jutten C (1999) Source separation in post-nonlinear mixtures IEEE Transaction On Signal Processing 47:2807-2820

Xu L, Cheung C, Yang H, Amari SI (1997) Independent component analysis by the information-theoretic approach with mixture of densities Proc. of 1997 IEEE Intl. Conf on Neural Networks (IEEE-INNS IJCNN97) :1821-1826

Yang HH, Amari S, Cichocki A (1998) Information theoretic approach to blind separation of sources in non-linear mixture Signal Process 64:291-300

Ziehe A, Kawanabe M, Harmeling S, Mueller KR (2001) Separation of post-nonlinear mixtures using ACE and temporal decorrelation Proc Int Workshop On Independent Component Analysis And Blind Signal Separation :433-438

Ziehe A, Kawanabe M, Harmeling S, Mueller KR (2003) Blind separation of post-nonlinear mixtures using Gaussianizing transformations and temporal decorrelation Proc ICA2003 :269-274

(44 refs)