Citation Relationships

Kennel MB, Shlens J, Abarbanel HD, Chichilnisky EJ (2005) Estimating entropy rates with Bayesian confidence intervals. Neural Comput 17:1531-76 [PubMed]

References and models cited by this paper

References and models that cite this paper

Balasubramanian V (1997) Statistical inference, Occam's razor, and statistical mechanics on the space of probability distributions Neural Comput 9:349-368

Bialek W, Nemenman I, Tishby N (2001) Predictability, complexity, and learning. Neural Comput 13:2409-63

Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D (1991) Reading a neural code. Science 252:1854-7 [PubMed]

Borst A, Theunissen FE (1999) Information theory and neural coding. Nat Neurosci 2:947-57 [Journal] [PubMed]

Brenner N, Strong SP, Koberle R, Bialek W, de Ruyter van Steveninck RR (2000) Synergy in a neural code. Neural Comput 12:1531-52 [PubMed]

Buracas GT, Zador AM, DeWeese MR, Albright TD (1998) Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20:959-69 [PubMed]

Costa J, Hero A (2004) Geodesic entropic graphs for dimension and entropy estimation in manifold learning IEEE Trans Signal Processing 25:2210-2221

Cover TM, Thomas JA (1991) Elements of Information Theory

de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W (1997) Reproducibility and variability in neural spike trains. Science 275:1805-8 [PubMed]

Duda RO, Hart PE, Stork DG (2000) Pattern Classification (2nd edition)

Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A 4:2379-94 [PubMed]

Gamerman D (1997) Markov chain Monte Carlo: Stochastic simulation for Bayesian inference

Gilmore R, Lefranc M (2002) The topology of chaos: Alice in stretch and squeeze land

Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications Biometrika 57:97-109

Hilborn R (2000) Chaos and nonlinear dynamics: An introduction for scientists and engineers

Kontoyiannis I, Algoet P, Suhov Y, Wyner A (1998) Nonparametric entropy estimation for stationary processes and random fields with applications to English text IEEE Trans Inf Theory 44:1319-1327

Krichevsky RE, Trofimov VK (1981) The performance of universal encoding IEEE Trans Info Theory 27:199-207

Lehmann E, Casella G (1998) Theory Of Point Estimation

Lempel A, Ziv J (1976) On the complexity of finite sequences IEEE Trans Inf Theory 22:75-78

Lewen GD, Bialek W, de Ruyter van Steveninck RR (2001) Neural coding of naturalistic motion stimuli. Network 12:317-29 [PubMed]

Lind D, Marcus B (1996) Symbolic dynamics and coding

Liu RC, Tzonev S, Rebrik S, Miller KD (2001) Variability and information in a neural code of the cat lateral geniculate nucleus. J Neurophysiol 86:2789-806 [Journal] [PubMed]

London M, Schreibman A, Häusser M, Larkum ME, Segev I (2002) The information efficacy of a synapse. Nat Neurosci 5:332-40 [Journal] [PubMed]

Ma SK (1981) Calculation of entropy from data of motion J Stat Phys 26:221-240

Mackay D, McCulloch W (1952) The limiting information capacity of a neuronal link Bull Math Biophy 14:127-135

MacKay DJ (2003) Information Theory, Inference and Learning Algorithms

Martin A, Seroussi G, Weinberger M (2004) Linear time universal coding and time reversal of tree sources via FSM closure IEEE Trans Inform Theory 50:1442-1468

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines J Chem Phys 21:1087-1091

Miller G, Madow W (1954) On the maximum likelihood estimate of the Shannon-Wiener measure of information Air Force Cambridge Research Center Technical Report 75:54

Nemenman I, Bialek W, de Ruyter van Steveninck R (2004) Entropy and information in neural spike trains: progress on the sampling problem. Phys Rev E Stat Nonlin Soft Matter Phys 69:056111 [Journal] [PubMed]

Nemenman I, Shafee F, Bialek W (2002) Entropy and inference, revisited Advances in neural information processsing systems, Dietterich TG:Becker S:Ghahraman Z, ed.

Orlitsky A, Santhanam N, Zhang J (2004) Universal compression of memoryless sources over unknown alphabets IEEE Trans Inform Theory 50:1469-1481

Ott E (2002) Chaos in dynamical systems

Paninski L (2003) Estimation of entropy and mutual information Neural Comput 15:1191-1253

Perkel DH, Bullock TH (1969) Neural coding Neurosciences research symposium summaries, Schmitt FO:Melnechuk T:Quarton GC:Adelman G, ed. pp.405

Reinagel P, Reid RC (2000) Temporal coding of visual information in the thalamus. J Neurosci 20:5392-400 [PubMed]

Rieke F, Warland D, de Ruyter van Steveninck, R, Bialek B (1997) Spikes: Exploring The Neural Code

Rissanen J (1989) Stochastic Complexity Statistical Inquiry

Roulston M (1999) Estimating the errors on measured entropy and mutual information Physica D 125:285-294

Schneidman E, Bialek W, Berry MJ (2003) Synergy, redundancy, and independence in population codes. J Neurosci 23:11539-53 [PubMed]

Shannon CE (1948) The mathematical theory of communication Bell Syst Tech J 27:379

Shlens J, Kennel M, Abarbanel H, Chichilnisky E (2005) Estimating information rates with Bayesian confidence intervals in neural spike trains

Shtarkov Y, Tjalkens T, Willems F (1995) Multialphabet weighting: Universal coding of context tree sources Problems Info Trans 33:17-28

Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24:1193-216 [Journal] [PubMed]

Solomonoff R (1964) A formal theory of inductive inference. Part I Information And Control 7:1-22

Strong SP, Koberle R, de Ruyter van Steveninck R, Bialek W (1997) Entropy and information in neuronal spike trains. Phys Rev Lett 80:197-201

Treves A, Panzeri S (1995) The upward bias in measures of information derived from limited data samples. Neural Comput 7:399-407

Victor J, Purpura K (1997) Metric-space analysis of spike trains: Theory, algorithms and application Comput Neural Syst 8:127-164

Warland DK, Reinagel P, Meister M (1997) Decoding visual information from a population of retinal ganglion cells. J Neurophysiol 78:2336-50 [Journal] [PubMed]

Willems F (1998) Context tree weighting: Extensions IEEE Trans Inform Theory 44:792-798

Willems FMJ, Shtarkov YM, Tjalkens T (1995) The context tree weighting method basic properties. IEEE Trans. Info. Theory IT-41:653-664

Wolpert DH, Wolf DR (1995) Estimating functions of probability distributions from a finite set of samples. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 52:6841-6854 [PubMed]

Wyner AD, Ziv J, Wyner AJ (1998) On the role of pattern matching in information theory IEEE Trans Inform Theory 44:2045-2056

Ziv J, Lempel A (1977) A universal algorithm for sequential data compression IEEE Trans Inform Theory 23:337-343

Ziv J, Lempel A (1978) Compression of individual sequences via variable-rate coding IEEE Trans Inform Theory 24:530-536

Edgerton JR, Hanson JE, Günay C, Jaeger D (2010) Dendritic sodium channels regulate network integration in globus pallidus neurons: a modeling study. J Neurosci 30:15146-59 [Journal] [PubMed]

   Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010) [Model]

Montemurro MA, Senatore R, Panzeri S (2007) Tight data-robust bounds to mutual information combining shuffling and model selection techniques. Neural Comput 19:2913-57 [Journal] [PubMed]

Shlens J, Kennel MB, Abarbanel HD, Chichilnisky EJ (2007) Estimating information rates with confidence intervals in neural spike trains. Neural Comput 19:1683-719 [Journal] [PubMed]

(58 refs)