Biophysical and phenomenological models of spike-timing dependent plasticity (Badoual et al. 2006)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:116096
"Spike-timing dependent plasticity (STDP) is a form of associative synaptic modification which depends on the respective timing of pre- and post-synaptic spikes. The biophysical mechanisms underlying this form of plasticity are currently not known. We present here a biophysical model which captures the characteristics of STDP, such as its frequency dependency, and the effects of spike pair or spike triplet interactions. ... A simplified phenomenological model is also derived..."
Reference:
1 . Badoual M, Zou Q, Davison AP, Rudolph M, Bal T, Fregnac Y, Destexhe A (2006) Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. Int J Neural Syst 16:79-97 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I K; I M; I Calcium;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Simplified Models; Synaptic Plasticity; Long-term Synaptic Plasticity; STDP;
Implementer(s):
Search NeuronDB for information about:  AMPA; NMDA; I Na,t; I K; I M; I Calcium;
TITLE decay of internal calcium concentration
:
: Internal calcium concentration due to calcium currents and pump.
: Differential equations.
:
: Simple model of ATPase pump with 3 kinetic constants (Destexhe 92)
:     Cai + P <-> CaP -> Cao + P  (k1,k2,k3)
: A Michaelis-Menten approximation is assumed, which reduces the complexity
: of the system to 2 parameters: 
:       kt = <tot enzyme concentration> * k3  -> TIME CONSTANT OF THE PUMP
:	kd = k2/k1 (dissociation constant)    -> EQUILIBRIUM CALCIUM VALUE
: The values of these parameters are chosen assuming a high affinity of 
: the pump to calcium and a low transport capacity (cfr. Blaustein, 
: TINS, 11: 438, 1988, and references therein).  
:
: Units checked using "modlunit" -> factor 10000 needed in ca entry
:
: VERSION OF PUMP + DECAY (decay can be viewed as simplified buffering)
:
: All variables are range variables
:
:
: This mechanism was published in:  Destexhe, A. Babloyantz, A. and 
: Sejnowski, TJ.  Ionic mechanisms for intrinsic slow oscillations in
: thalamic relay neurons. Biophys. J. 65: 1538-1552, 1993)
:
: Written by Alain Destexhe, Salk Institute, Nov 12, 1992
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX cad
	USEION ca READ ica, cai WRITE cai
	RANGE ca
	GLOBAL depth,cainf,taur
}

UNITS {
	(molar) = (1/liter)			: moles do not appear in units
	(mM)	= (millimolar)
	(um)	= (micron)
	(mA)	= (milliamp)
	(msM)	= (ms mM)
	FARADAY = (faraday) (coulomb)
}


PARAMETER {
	depth	= 0.35	(um)		: depth of shell
	taur	= 70	(ms)		: rate of calcium removal
	cainf	= 5e-7(mM)
	cai		(mM)

}

STATE {
	ca		(mM)
}

INITIAL {
	ca = cainf
        cai=ca
}

ASSIGNED {
	ica		(mA/cm2)
	drive_channel	(mM/ms)

}
	
BREAKPOINT {
	SOLVE state METHOD derivimplicit
}

DERIVATIVE state { 

	drive_channel =  - (10000) * ica / (2 * FARADAY * depth * 18.0)
	if (drive_channel <= 0.) { drive_channel = 0. }	: cannot pump inward

	ca' = drive_channel + (cainf-ca)/taur
	cai = ca
}








Loading data, please wait...