Phase oscillator models for lamprey central pattern generators (Varkonyi et al. 2008)

 Download zip file 
Help downloading and running models
Accession:118392
In our paper, Varkonyi et al. 2008, we derive phase oscillator models for the lamprey central pattern generator from two biophysically based segmental models. We study intersegmental coordination and show how these models can provide stable intersegmental phase lags observed in real animals.
Reference:
1 . Várkonyi PL, Kiemel T, Hoffman K, Cohen AH, Holmes P (2008) On the derivation and tuning of phase oscillator models for lamprey central pattern generators. J Comput Neurosci 25:245-61 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Connectionist Network;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: MATLAB;
Model Concept(s): Temporal Pattern Generation; Oscillations; Spatio-temporal Activity Patterns; Parameter Fitting; Parameter sensitivity; Phase Response Curves;
Implementer(s): Varkonyi, Peter [vpeter at mit.bme.hu];
%this function is integrated over a period to achieve the coupling function
%output = inp * dEdinp * z
%where
%-  inp = synaptic input (presynaptic activity)
%-  dEdinp is the following derivative: d[right side of fast equation of oscillator] / d inp
%-  z = phase response curve

function output = tolofv(fik,shift)

global fidin ydin fiPRC PRC

for i=1:length(fik)
    fi=mod(fik(i),2*pi);
    y=interp1(fidin,ydin,fi);

    inp=interp1(fidin,ydin(:,1),mod(fi+shift,2*pi));
    z=interp1(fiPRC,PRC,fi);

    dx=10^(-8);
    dEdinp=(wilson_simplified(0,y+[dx 0])-wilson_simplified(0,y-[dx 0]))/2/dx;
    dEdinp=dEdinp(1)+1;
    output(i)=inp*dEdinp*z;
end

Loading data, please wait...