Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:124513
This model was implemented by Rob Morgan in the Soltesz lab at UC Irvine. It is a scaleable model of the rat dentate gyrus including four cell types. This model runs in serial (on a single processor) and has been published at the size of 50,000 granule cells (with proportional numbers of the other cells).
References:
1 . Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437-53 [PubMed]
2 . Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I (2007) Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol 97:1566-87 [PubMed]
3 . Morgan RJ, Soltesz I (2008) Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci U S A 105:6179-84 [PubMed]
4 . Morgan RJ, Santhakumar V, Soltesz I (2007) Modeling the dentate gyrus. Prog Brain Res 163:639-58 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Dentate gyrus;
Cell Type(s): Dentate gyrus granule GLU cell; Dentate gyrus mossy cell; Dentate gyrus basket cell; Dentate gyrus hilar cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Epilepsy;
Implementer(s): Bezaire, Marianne [mariannejcase at gmail.com]; Morgan, Robert [polomav at gmail.com];
Search NeuronDB for information about:  Dentate gyrus granule GLU cell;
Files displayed below are from the implementation
/
dentate_gyrus
500net
README.html
bgka.mod *
CaBK.mod
ccanl.mod *
Gfluct2.mod
gskch.mod *
hyperde3.mod *
ichan2.mod *
inhsyn.mod
LcaMig.mod *
nca.mod
ppsyn.mod
tca.mod *
50knet.hoc
bcdist.hoc
bcell.bcell
bcell.gcell
bcell.hcell *
bcell.mcell
gcdist.hoc
gcell.bcell
gcell.gcell
gcell.hcell
gcell.mcell
hcdist.hoc
hcell.bcell
hcell.gcell
hcell.hcell *
hcell.mcell
mcdist.hoc
mcell.bcell
mcell.gcell
mcell.hcell
mcell.mcell
mosinit.hoc
parameters.dat
pbc.hoc
pgc.hoc
phc.hoc
pmc.hoc
run50knet.bash
screenshot.jpg
                            
TITLE CaGk
: Calcium activated K channel.
: Modified from Moczydlowski and Latorre (1983) J. Gen. Physiol. 82

UNITS {
	(molar) = (1/liter)
}

UNITS {
	(mV) =	(millivolt)
	(mA) =	(milliamp)
	(mM) =	(millimolar)
}


NEURON {
	SUFFIX cagk
	USEION nca READ ncai VALENCE 2
	USEION lca READ lcai VALENCE 2
	USEION tca READ tcai VALENCE 2
	USEION k READ ek WRITE ik
	RANGE gkbar,gkca, ik
	GLOBAL oinf, otau
}

UNITS {
	FARADAY = (faraday)  (kilocoulombs)
	R = 8.313424 (joule/degC)
}

PARAMETER {
	celsius		(degC)
	v		(mV)
	gkbar=.01	(mho/cm2)	: Maximum Permeability
	cai = 5.e-5	(mM)
	ek		(mV)

	d1 = .84
	d2 = 1.
	k1 = .48e-3	(mM)
	k2 = .13e-6	(mM)
	abar = .28	(/ms)
	bbar = .48	(/ms)
        st=1            (1)
	lcai		(mV)
	ncai		(mV)
	tcai		(mV)
}

ASSIGNED {
	ik		(mA/cm2)
	oinf
	otau		(ms)
        gkca          (mho/cm2)
}

INITIAL {
	cai= ncai + lcai + tcai
        rate(v,cai)
        o=oinf
}

STATE {	o }		: fraction of open channels

BREAKPOINT {
	SOLVE state METHOD cnexp
	gkca = gkbar*o^st
	ik = gkca*(v - ek)
}

DERIVATIVE state {	: exact when v held constant; integrates over dt step
	cai= ncai + lcai + tcai : this line was added to make the channel properly dependent on the current calcium concentration
	rate(v, cai)
	o' = (oinf - o)/otau
}

FUNCTION alp(v (mV), c (mM)) (1/ms) { :callable from hoc
	alp = c*abar/(c + exp1(k1,d1,v))
}

FUNCTION bet(v (mV), c (mM)) (1/ms) { :callable from hoc
	bet = bbar/(1 + c/exp1(k2,d2,v))
}

FUNCTION exp1(k (mM), d, v (mV)) (mM) { :callable from hoc
	exp1 = k*exp(-2*d*FARADAY*v/R/(273.15 + celsius))
}

PROCEDURE rate(v (mV), c (mM)) { :callable from hoc
	LOCAL a
	a = alp(v,c)
	otau = 1/(a + bet(v, c))
	oinf = a*otau
}


Loading data, please wait...